精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线C1:y= x2(p>0)的焦点与双曲线C2 ﹣y2=1的右焦点的连线交C1于第一象限的点M,若C1在点M处的切线平行于C2的一条渐近线,则p=(
A.
B.
C.
D.

【答案】D
【解析】解:由抛物线C1:y= x2(p>0)得x2=2py(p>0), 所以抛物线的焦点坐标为F(0, ).
﹣y2=1得a= ,b=1,c=2.
所以双曲线的右焦点为(2,0).
则抛物线的焦点与双曲线的右焦点的连线所在直线方程为
①.
设该直线交抛物线于M( ),则C1在点M处的切线的斜率为
由题意可知 = ,得x0= ,代入M点得M(
把M点代入①得:
解得p=
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=(x2﹣2x﹣3)的单调减区间是(  )
A.(3,+∞)
B.(1,+∞)
C.(﹣∞,1)
D.(﹣∞,﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为丰富中学生的课余生活,增进中学生之间的交往与学习,某市甲乙两所中学举办一次中学生围棋擂台赛.比赛规则如下,双方各出3名队员并预先排定好出场顺序,双方的第一号选手首先对垒,双方的胜者留下进行下一局比赛,负者被淘汰出局,由第二号选手挑战上一局获胜的选手,依此类推,直到一方的队员全部被淘汰,另一方算获胜.假若双方队员的实力旗鼓相当(即取胜对手的概率彼此相等) (Ⅰ)在已知乙队先胜一局的情况下,求甲队获胜的概率.
(Ⅱ)记双方结束比赛的局数为ξ,求ξ的分布列并求其数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为D,若对于a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的三边长,则称f(x)为“三角形函数”.给出下列四个函数: ①f(x)=lg(x+1)(x>0);
②f(x)=4﹣cosx;


其中为“三角形函数”的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的顶点在坐标原点,焦点F在x轴的正半轴上,过点F的直线l与抛物线C相交于A、B两点,且满足
(1)求抛物线C的标准方程;
(2)若点M在抛物线C的准线上运动,其纵坐标的取值范围是[﹣1,1],且 ,点N是以线段AB为直径的圆与抛物线C的准线的一个公共点,求点N的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+x2﹣xlna(a>0,a≠1).
(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若函数y=|f(x)﹣t|﹣1有三个零点,求t的值;
(Ⅲ)若存在x1 , x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q﹣BP﹣C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=(x+b)lnx,g(x)=alnx+ ﹣x(a≠1),已知曲线y=f(x)在点(1,f(1))处的切线与直线x+2y=0垂直.
(1)求b的值;
(2)若对任意x≥1,都有g(x)> ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,椭圆C: =1(a>b>0)的长轴长为2,抛物线E:x2=2y的准线与椭圆C相切.

(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l与椭圆C相交于A,B两点且与抛物线E在第一象限相切于点P,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M,求 的最小值及此时点P的坐标.

查看答案和解析>>

同步练习册答案