精英家教网 > 高中数学 > 题目详情
12.
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)设$\overrightarrow{AD}$=λ$\overrightarrow{AB}$,异面直线AC1与CD所成角的余弦值为$\frac{{9\sqrt{10}}}{50}$,求λ的值;
(2)若点D是AB的中点,求二面角D-CB1-B的余弦值.

分析 (1)以CA、CB、CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,利用向量法能求出λ的值.
(2)求出平面CDB1的法向量和面CDB1的一个法向量,利用向量法能求出二面角D-CB1-B的余弦值.

解答 解:(1)由AC=3,BC=4,AB=5,得∠ACB=90°…(1分)
以CA、CB、CC1所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系.
则A(3,0,0),C1(0,0,4),B(0,4,0),
设D(x,y,z),则由$\overrightarrow{AD}=λ\overrightarrow{AB}$,得$\overrightarrow{CD}=(3-3λ,4λ,0)$,
而$\overrightarrow{A{C_1}}=(-3,0,4)$,
根据$\frac{{9\sqrt{10}}}{50}=|\frac{-9+9λ}{{5\sqrt{25{λ^2}-18λ+9}}}|$,解得,$λ=\frac{1}{5}$或$λ=-\frac{1}{3}$.…(5分)
(2)$\overrightarrow{CD}=(\frac{3}{2},2,0),\overrightarrow{C{B_1}}=(0,4,4)$,
设平面CDB1的法向量$\overrightarrow{{n}_{1}}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{CD}=\frac{3}{2}x+2y=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{C{B}_{1}}=4y+4z=0}\end{array}\right.$,取x=4,得面CDB1的一个法向量为$\overrightarrow{n_1}=(4,-3,3)$,…(7分)
而平面CBB1的一个法向量为$\overrightarrow{n_2}=(1,0,0)$,
并且$<\overrightarrow{n_1},\overrightarrow{n_2}>$与二面角D-CB1-B相等,
所以二面角D-CB1-B的余弦值为$cosθ=cos<\overrightarrow{n_1},\overrightarrow{n_2}>=\frac{2}{17}\sqrt{34}$. …(10分)
(第(1)题中少一解扣(1分);没有交代建立直角坐标系过程扣(1分).第(2)题如果结果相差符号扣(1分).)

点评 本题考查满足异面直线所成余弦值的实数值的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设i是虚数单位,则|$\frac{i}{1-i}$|=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.点M在抛物线C:x2=2py(p>0)上,以M为圆心的圆与x轴相切于点N,过点N作直线与C相切于点P(异于点O),OP的中点为Q,则(  )
A.点Q在圆M内B.点Q在圆M上
C.点Q在圆M外D.以上结论都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数y=-(n+1)x2+2(1-n)x+1在-1≤x≤1时,y随着x的增大而增大,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,AB是⊙O的直径,AC,DE分别是⊙O的切线,切点分别为A,E,BC交⊙O于E.
(Ⅰ)证明:D为AC的中点;
(Ⅱ)若⊙O的半径为$\sqrt{3}$,CE=1,求DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PA=PB=AD=2,四边形ABCD满足AB⊥AD,BC∥AD且BC=4,点M为PC的中点,点E为BC边上的点.
(Ⅰ)求证:平面ADM⊥平面PBC;
(Ⅱ)当$\overrightarrow{BE}$=$\frac{1}{2}$$\overrightarrow{BC}$时,求点E到平面PDC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,且PA⊥平面ABCD,PA=AB=AD=2,∠BAD=60°.
(Ⅰ)证明:平面PBD⊥平面PAC;
(Ⅱ)求平面APD与平面PBC所成二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方形ABCD与正方形ABEF构成一个$\frac{π}{3}$的二面角,将△BEF绕BE旋转一周.在旋转过程中,(  )
A.直线AC必与平面BEF相交
B.直线BF与直线CD恒成$\frac{π}{4}$角
C.直线BF与平面ABCD所成角的范围是[$\frac{π}{12}$,$\frac{π}{2}$]
D.平面BEF与平面ABCD所成的二面角必不小于$\frac{π}{3}$

查看答案和解析>>

同步练习册答案