精英家教网 > 高中数学 > 题目详情
(2009•黄浦区二模)在三棱锥P-ABC中,PA⊥PB,PA⊥PC,PB⊥PC,点D、E分别是棱BC、AP的中点.
(1)试用反证法证明直线DE与直线CP是异面直线;
(2)若PA=PB=PC=4,F为棱AB上的点,且AF=
14
AB
,求二面角D-EF-B的大小(结果用反三角函数值表示).
分析:(1)用反证法证明,假设DE与CP不是异面直线.设DE与CP都在平面α上.由P∈α,E∈α,知PE?α.A∈α.由C∈α,D∈α,CD?α.知B∈α.从而得到点A、B、C、P都在平面α上,这与P、A、B、C不共面(P-ABC是三棱锥)矛盾,由此得到直线DE与CP是异面直线.
(2)建立恰当的空间直角坐标系.借助法向量用向量法求二面角D-EF-B的大小.
解答:解:(1)证明:(反证法)假设DE与CP不是异面直线.(2分)
设DE与CP都在平面α上.∵P∈α,E∈α,∴PE?α.∵A∈PE,∴A∈α.
又∵C∈α,D∈α,∴CD?α.∵B∈CD,∴B∈α.
∴点A、B、C、P都在平面α上,这与P、A、B、C不共面(P-ABC是三棱锥)矛盾,于是,假设不成立.(5分)
所以直线DE与CP是异面直线.(6分)
 (2)按如图所示建立空间直角坐标系.            (7分)
由题可知,A(4,0,0)、B(0,4,0)、C(0,0,4),进一步有D(0,2,2)、
E(2,0,0)、F(3,1,0),且平面EFB的一个法向量为
n1
=
OC
=(0,0,4)

设平面DEF的一个法向量为
n2
=(x,y,z)
,则
n2
DE
=0
n2
EF
=0
,即
x-y-z=0
x+y=0

取x=1,得y=-1,z=2.
所以
n2
=(1,-1,2)
.                           (9分)
n1
n2
的夹角为θ
,于是,cosθ=
n1
n2
|
n1
|•|
n2
|
=
8
4
6
=
6
3
θ=arccos
6
3
.         (10分)
结合图形可以判断二面角D-EF-B是锐角,因此二面角D-EF-B的大小为arccos
6
3
.           (12分)
点评:本题考查异面直线的证明和二面角的求法,解题时要认真审题,注意反证法和向量法的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•黄浦区二模)设α∈(0,
π
2
),则
sin3α
cosα
+
cos3α
sinα
的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区二模)已知角α的顶点在原点,始边与x轴正半轴重合,点P(-4m,3m)(m<0)是角α终边上一点,则2sinα+cosα=
-
2
5
-
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区二模)关于x的方程(2+x)i=2-x(i是虚数单位)的解x=
-2i
-2i

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区二模)若函数f(x)=
x
2x+1
-ax-2
是定义域为R的偶函数,则实数a=
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区二模)已知全集U=R,A={x|
x-1x-2
≥0,x∈R}
,B={x||x-1|≤1,x∈R},则(CRA)∩B=
(1,2]
(1,2]

查看答案和解析>>

同步练习册答案