精英家教网 > 高中数学 > 题目详情
7.已知sinα+$\sqrt{3}$cosα=2,则tanα=(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{3}$

分析 由条件利用同角三角函数的基本关系,求得α=2kπ+$\frac{π}{6}$,k∈Z,从而求得tanα的值.

解答 解:∵sinα+$\sqrt{3}$cosα=2,∴2sin(α+$\frac{π}{3}$)=2,∴sin(α+$\frac{π}{3}$)=1,∴cos(α+$\frac{π}{3}$)=0,
∴α+$\frac{π}{3}$=2kπ+$\frac{π}{2}$,k∈Z,即α=2kπ+$\frac{π}{6}$,则tanα=$\frac{\sqrt{3}}{3}$,
故选:D.

点评 本题主要考查同角三角函数的基本关系,求得α=2kπ+$\frac{π}{6}$,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若f(x)=ln($\sqrt{{4x}^{2}+1}$-2x)-1.则f(x)+f(-x)=(  )
A.-2B.0C.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.金红石(TiO2)的晶胞如图所示,图中色点代表钛原子,黑点代表氧原子.长方体的8个顶点和中心是钛原子,4个氧原子的位置是A(0.31a,0.31b,0),B(0.69a,0.69b,0),C(0.81a,0,0.5c)和D(0.19a,0.81b,0.5c).中心处钛原子与A处氧原子间的距离叫做键长.当a=b时,试求键长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{OA}$=(sin$\frac{x}{3}$,$\sqrt{3}$cos$\frac{x}{3}$),$\overrightarrow{OB}$=(cos$\frac{x}{3}$,cos$\frac{x}{3}$)(x∈R),f(x)=$\overrightarrow{OA}$•$\overrightarrow{OB}$.
(1)求函数f(x)的解析式,并求图象的对称中心的横坐标;
(2)若x∈(0,π],方程f(x)=a有两个不同的解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,且|k$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow{b}$|,(k>0),令函数f(k)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求f(k)的表达式(用k表示)
(2)求f(k)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知?ABCD,则$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{AC}$,$\overrightarrow{AB}$-$\overrightarrow{AD}$=$\overrightarrow{DB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆$\frac{x^2}{3}+\frac{y^2}{2}=1$的焦点坐标是(  )
A.(0,±1)B.(±1,0)C.$(0,±\sqrt{2})$D.$(±\sqrt{2},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow a=(1,3)$,$\overrightarrow b=(m,-1)$,若$\overrightarrow a⊥\overrightarrow b$,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线x2=8y的弦AB的中点的纵坐标为4,则|AB|的最大值为12.

查看答案和解析>>

同步练习册答案