精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x2+2x.
(1)若f(a)=-3,求a的值;
(2)当x∈[-1,2]时,求f(x)的最大值和最小值.
考点:二次函数的性质,二次函数在闭区间上的最值
专题:函数的性质及应用
分析:(1)由函数f(x)=-x2+2x,根据f(a)=-a2+2a=-3,求得a的值.
(2)当x∈[-1,2]时,f(x)=-(x-1)2+1,再利用二次函数的性质求得f(x)的最大值和最小值.
解答: 解:(1)由于函数f(x)=-x2+2x,f(a)=-a2+2a=-3,∴a=-1,或a=3.
(2)当x∈[-1,2]时,∵f(x)=-(x-1)2+1,故当x=1时,函数取得最大值为1;当x=-1时,函数取得最小值为-3.
点评:本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若{1,2}⊆A⊆{1,2,3,4,5}}则满足条件的集合A的个数是(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,如果PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC,PD,BC的中点
(Ⅰ)求证:PA∥平面EFG;
(Ⅱ)求证:CG⊥平面PCD,并求P-EFG三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2x-1
在点P处的切线平行于直线x-y=0,则点P的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x2+x-6的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥平面ABCD,ABCD是矩形,PA=AB=
2
,AD=
3
,点F是PB的中点,点E是边BC上的动点.
(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lg(3-4x+x2)的定义域为M,当x∈M时,关于x方程4x-2x+1=b(b∈R)有两不等实数根,则b的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=0.83,b=30.8,c=log0.83,则a,b,c三者的大小关系是
 
.(用“<”连接).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个三棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如右图所示),则此三棱锥的体积为(  )
A、
2
B、6
2
C、
1
3
D、2
2

查看答案和解析>>

同步练习册答案