精英家教网 > 高中数学 > 题目详情
已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于(   )
A.B.C.D.
A
已知三棱锥的侧棱长的底面边长的2倍,设底面边长为1,侧棱长为2,连接顶点与底面中心,则侧棱在底面上的射影长为,所以侧棱与底面所成角的余弦值等于,选A。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,是正方形,是正方形的中心,底面,底面边长为的中点.求证:平面,平面平面
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图(3):四面体D—ABC中,DB⊥面ABC, ∠DAB="30°,∠BAC=45°," ∠ACB=90°.BC=.
(1)点A与面BCD的距离;  (2)AB与CD成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点O在二面角α-AB-β的棱上,点P在α内,且∠POB=45°.若对于β内异于O的任意一点Q,都有∠POQ≥45°,则二面角α-AB-β的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为__________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)

如图①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使平面PDC⊥平面ABCD(如图②)
(1)求证AP∥平面EFG;
(2)求二面角G-EF-D的大小;
(3)在线段PB上确定一点Q,使PC⊥平面ADQ,试给出证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥中,底面,点分别是的中点.

(1)求证:⊥平面;(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)正方形ABCD边长为4,点E是边CD上的一点,
AED沿AE折起到的位置时,有平面 平面ABCE,
并且(如图)
(I)判断并证明E点的具体位置;(II)求点D/到平面ABCE的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱柱中,所有的棱长都为2,.
(Ⅰ)求证:
(Ⅱ)当三棱柱的体积最大时,求平面与平面所成的锐角的余弦值.

查看答案和解析>>

同步练习册答案