精英家教网 > 高中数学 > 题目详情

【题目】已知直线与焦点为的抛物线相切.

(Ⅰ)求抛物线的方程;

(Ⅱ)过点的直线与抛物线交于两点,求两点到直线的距离之和的最小值.

【答案】(I);(II).

【解析】

(Ⅰ)由消去得,,根据判别式等于零解得,从而可得结果;(Ⅱ)可设直线的方程为,由消去得,,利用韦达定理求得线段的中点的坐标,设点到直线的距离为,点到直线的距离为,点到直线的距离为,由梯形中位线定理可得,由点到直线的距离公式,利用配方法可得结果.

(Ⅰ)∵直线与抛物线相切.

消去得,,从而,解得.

∴抛物线的方程为.

(Ⅱ)由于直线的斜率不为0,

所以可设直线的方程为.

消去得,

,从而

∴线段的中点的坐标为.

设点到直线的距离为,点到直线的距离为,点到直线的距离为

∴当时,两点到直线的距离之和最小,最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为正方形,.

(1)证明:平面平面.

(2)若平面,二面角,三棱锥的外接球的球心为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,圆经过椭圆的两个焦点和两个顶点,点在椭圆上,且.

(Ⅰ)求椭圆的方程和点的坐标;

(Ⅱ)过点的直线与圆相交于两点,过点垂直的直线与椭圆相交于另一点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点是椭圆上任意三点,关于原点对称且满足.

(1)求椭圆的方程.

(2)若斜率为的直线与圆:相切,与椭圆相交于不同的两点,求时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线 .

(1)求证:对,直线与圆总有两个不同的交点

(2)求弦的中点的轨迹方程,并说明其轨迹是什么曲线;

(3)是否存在实数,使得原上有四点到直线的距离为?若存在,求出的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于集合,定义函数对于两个集合,定义集合. 已知, .

(Ⅰ)写出的值,并用列举法写出集合;

(Ⅱ)用表示有限集合所含元素的个数,求的最小值;

(Ⅲ)有多少个集合对,满足,且?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, , ,点为棱的中点.

(1)证明: 平面

(2)若,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对点的直线l分別交两点.

(1)的面积为,求直线l的方程;

(2)最小时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,及圆

1)求过点的圆的切线方程;

2)若过点的直线与圆相交,截得的弦长为,求直线的方程.

查看答案和解析>>

同步练习册答案