精英家教网 > 高中数学 > 题目详情

【题目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(1)求证:不论为何值,总有平面BEF⊥平面ABC;

(2)当λ为何值时,平面BEF⊥平面ACD ?

【答案】1)见解析(2λ

【解析】(1)证明:∵AB⊥平面BCD∴AB⊥CD.

∵CD⊥BC,且AB∩BCB∴CD⊥平面ABC.

λ(0λ1)

不论λ为何值,恒有EF∥CD.

EF平面ABCEF平面BEF.

不论λ为何值恒有平面BEF⊥平面ABC.

(2)解:由(1)知,BE⊥EF平面BEF⊥平面ACD∴BE⊥平面ACD.∴BE⊥AC.

∵BCCD1∠BCD90°∠ADB60°

BDABtan60°.

AC.

AB2AE·AC,得AE.λ.

故当λ时,平面BEF平面ACD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a4x﹣a2x+1+1﹣b(a>0)在区间[1,2]上有最大值9和最小值1
(1)求a,b的值;
(2)若不等式f(x)﹣k4x≥0在x∈[﹣1,1]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了对生产的一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到以下数据:

单价x(元/件)

60

62

64

66

68

70

销量y(件)

91

84

81

75

70

67

I)画出散点图,并求关于的回归方程;

II)已知该产品的成本是36/件,预计在今后的销售中,销量与单价仍然服从(I)中的关系,为使企业获得最大利润,该产品的单价应定为多少元(精确到元)?

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为自然对数的底数.

(1)若函数的图象在点处的切线方程为,求实数 的值;

(2)当时,若存在 ,使成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;

(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ (Ⅰ)判断函数的奇偶性,并加以证明;
(Ⅱ)用定义证明f(x)在(0,1)上是减函数;
(Ⅲ)函数f(x)在(﹣1,0)上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数f(x)在[0,+∞)内是增函数,且f(3)=0,则关于x的不等式xf(x)≤0的解集为(
A.{x|﹣3≤x≤0或x≥3}
B.{x|x≤﹣3或﹣3≤x≤0}
C.{x|﹣3≤x≤3}
D.{x|x≤﹣3或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为为参数, ),直线的极坐标方程为.

(1)写出曲线的普通方程和直线的直角坐标方程;

(2)为曲线上任意一点, 为直线任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中 平面 ,且 .

(1)求证:

(2)在线段上,是否存在一点,使得二面角的大小为,如果存在,求与平面所成角,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案