精英家教网 > 高中数学 > 题目详情
17.已知双曲线C:${x^2}-\frac{y^2}{4}=1$,则双曲线C 的一条渐近线的方程为y=2x或(y=-2x).

分析 求出a和b 的值,再根据焦点在x轴上,求出渐近线方程.

解答 解:由双曲线C:${x^2}-\frac{y^2}{4}=1$得到a=1,b=2,
则双曲线C 的渐近线方程为y=±2x,
故答案为:y=2x或(y=-2x).

点评 本题考查双曲线的标准方程,以及双曲线的简单性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知a>0且a≠1,函数$f(x)=\left\{{\begin{array}{l}{{{log}_{\frac{1}{3}}}x,}&{x>0}\\{{a^x}+b,}&{x≤0}\end{array}}\right.$满足f(0)=2,f(-1)=3,则f(f(-3))=(  )
A.-3B.-2C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在矩形ABCD中,AB=2,BC=1,那么$\overrightarrow{AC}•\overrightarrow{AB}$=4;若E为线段AC上的动点,则$\overrightarrow{AC}•\overrightarrow{BE}$的取值范围是[-4,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,$C=\sqrt{2},∠B=\frac{π}{4},b=2$,则∠A=105°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.复数i(2-i)在复平面内对应的点的坐标为(  )
A.(-2,1)B.(2,-1)C.(1,2)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an} 是各项均为正数的等比数列,且a2=1,a3+a4=6
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)设数列{an-n} 的前n 项和为Sn,比较S4 和S5 的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sinx-3mx,g(x)=mxcosx-mx.
(1)讨论f(x)在区间[0,π]上的单调性;
(2)若对任意x≥0,都有f(x)≤g(x),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥E-ABCD中,平面EAB⊥平面ABCD,四边形ABCD为矩形,EA⊥EB,点M,N分别是AE,CD的中点.
求证:(1)直线MN∥平面EBC;
(2)直线EA⊥平面EBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在平面直角坐标系xOy中,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2$\sqrt{3}$,且过点(1,$\frac{\sqrt{3}}{2}$),椭圆上顶点为A,过点A作圆(x-1)2+y2=r2(0<r<1)的两条切线分别与椭圆E相交于点B,C(不同于点A),设直线AB,AC的斜率分别为kAB,KAC
(1)求椭圆的标准方程;
(2)求kAB•kAC的值;
(3)试问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

同步练习册答案