精英家教网 > 高中数学 > 题目详情
11、A是△BCD平面外的一点,E、F分别是BC、AD的中点,
(1)求证:直线EF与BD是异面直线;
(2)若AC⊥BD,AC=BD,求EF与BD所成的角.
分析:(1)假设EF与BD不是异面直线,则EF与BD共面,得到A、B、C、D在同一平面内,矛盾.
(2)取CD的中点G,利用三角形中位线的性质找出异面直线成的角∠FEG,把此角放在一个三角形中,解此三角形,求出此角的大小.
解答:(1)证明:用反证法.设EF与BD不是异面直线,
则EF与BD共面,从而DF与BE共面,即AD与BC共面,
所以A、B、C、D在同一平面内,
这与A是△BCD平面外的一点相矛盾.
故直线EF与BD是异面直线.
(2)解:取CD的中点G,连接EG、FG,
则EG∥BD,
所以相交直线EF与EG所成的锐角或直角即为异面直线EF与BD所成的角.
在Rt△EGF中,求得∠FEG=45°,
即异面直线EF与BD所成的角为45°.
点评:本题考查异面直线的证明方法,及求异面直线成的角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

A是△BCD平面外的一点,E、F分别是BC、AD的中点,若AC⊥BD,AC=BD,求EF与BD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

A是△BCD平面外的一点,E、F分别是BC、AD的中点.

(1)求证:直线EF与BD是异面直线;

(2)若AC⊥BD,AC=BD,求EF与BD所成的角.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省邯郸市临漳一中高一(上)第三次月考数学试卷(解析版) 题型:解答题

A是△BCD平面外的一点,E、F分别是BC、AD的中点,若AC⊥BD,AC=BD,求EF与BD所成的角.

查看答案和解析>>

科目:高中数学 来源:2006年高考第一轮复习数学:9.1 平面、空间两条直线(解析版) 题型:解答题

A是△BCD平面外的一点,E、F分别是BC、AD的中点,
(1)求证:直线EF与BD是异面直线;
(2)若AC⊥BD,AC=BD,求EF与BD所成的角.

查看答案和解析>>

同步练习册答案