精英家教网 > 高中数学 > 题目详情

【题目】如图所示的“8”字形曲线是由两个关于x轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是x2+y24y40,双曲线的左、右顶点AB是该圆与x轴的交点,双曲线与半圆相交于与x轴平行的直径的两端点.

1)试求双曲线的标准方程;

2)记双曲线的左、右焦点为F1F2,试在“8”字形曲线上求点P,使得∠F1PF2是直角.

3)过点A作直线l分别交“8”字形曲线中上、下两个半圆于点MN,求|MN|的最大长度.

【答案】11;(2)(),()(3)最大长度为8

【解析】

1)求出半圆的圆心和半径,求得圆与x轴的交点,即有a2,令y2,解得交点,代入双曲线方程,解得b,进而得到双曲线的方程;

2)求出焦点坐标,∠F1PF2是直角,则设Pxy),则由x2+y28,联立两半圆的方程及双曲线方程,解得交点,注意检验,即可得到所求的P的坐标.

3)讨论斜率是否存在,求出|MN|,即可得出结论.

1)上半个圆所在圆方程是x2+y24y40,则圆心为(02),半径为2

则下半个圆所在圆的圆心为(0,﹣2),半径为2

双曲线的左、右顶点AB是该圆与x轴的交点,即为(﹣20),(20),即a2

由于双曲线与半圆相交于与x轴平行的直径的两端点,则令y2,解得,x=±2

即有交点为(±22).

设双曲线的方程为1a0b0),

1,且a2,解得,b2

则双曲线的方程为1

2)双曲线的左、右焦点为F1(﹣20),F220),

若∠F1PF2是直角,则设Pxy),则有x2+y28

解得,x26y22.故P的坐标为(),().

解得,y-1,不满足题意,舍去.

解得,y1,不满足题意,舍去.

故在“8”字形曲线上所求点P的坐标为(),().

3)设MN的横坐标分别为xMxN

直线l的斜率不存在时,|MN|8

直线l的斜率存在时,设方程为ykx+2)( ),

代入x2+y24y40,可得(k2+1x2+4k24kx+4k28k40

∴﹣2xM

xM

同理xN

|MN||xMxN|

综上:|MN|的最大长度为8

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧棱与底面垂直,,点的中点.

(1)求证:平面

(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如下表:

温度x/℃

21

23

24

27

29

32

产卵数y/

6

11

20

27

57

77

经计算得:

线性回归模型的残差平方和

其中分别为观测数据中的温度和产卵数,

1)若用线性回归模型,求y关于x的回归方程(精确到0.1);

2)若用非线性回归模型求得y关于x的回归方程为,且相关指数.

①试与1中的回归模型相比,用说明哪种模型的拟合效果更好.

②用拟合效果好的模型预测温度为35℃时该用哪种药用昆虫的产卵数(结果取整数)

附:一组数据其回归直线的斜率和截距的最小二乘估计为;相关指数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为,其范围为,分别有五个级别:,畅通;,基本畅通;,轻度拥堵;,中度拥堵;,严重拥堵.在晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.

(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;

(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;

(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的一段图像如图所示.

(1)求此函数的解析式;

(2)求此函数在上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量(单位:千万件)的影响,统计了近年投入的年研发费用与年销售量的数据,得到散点图如图所示.

(1)利用散点图判断(其中均为大于的常数)哪一个更适合作为年销售量和年研发费用的回归方程类型(只要给出判断即可,不必说明理由)

(2)对数据作出如下处理,令,得到相关统计量的值如下表:根据第(1)问的判断结果及表中数据,求关于的回归方程;

15

15

28.25

56.5

(3)已知企业年利润(单位:千万元)与的关系为(其中),根据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

如图在直三棱柱ABC—A1B1C1中,AC=3BC=4AB=5AA1=4,DAB

中点.

(1) 求证: AC⊥BC1

(2) 求证:AC1平面CDB1

(3) 求异面直线AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,分别为椭圆的左、右焦点.设不经过焦点的直线与椭圆交于两个不同的点,焦点到直线的距离为.若直线的斜率依次成等差数列,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系, 经过原点的直线分成左、右两部分,记左、右两部分的面积分别为 ,取得最小值时,直线的斜率(

A.等于1B.等于C.等于D.不存在

查看答案和解析>>

同步练习册答案