精英家教网 > 高中数学 > 题目详情
((本小题满分13分)
已知椭圆,以原点为圆心,椭圆的短半轴为半径的圆与直线相切。
(1)求椭圆C的方程;
(2)设轴对称的任意两个不同的点,连结交椭圆
于另一点,证明:直线x轴相交于定点
(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值
范围。
解:(1)由题意知

故椭圆C的方程为 ………………3分
(2)由题意知直线PB的斜率存在,设直线PB的方程为
 …………①

代入整理得,
 ………………②
由①得代入②整得,得
所以直线AE与x轴相交于定点Q(1,0) …………7分
(3)当过点Q的直线MN的斜率存在时,
设直线MN的方程为在椭圆C上。


所以 ………………13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
已知椭圆C的焦点F1(-,0)和F2,0),长轴长6,设直线交椭圆C于A  B两点,且线段AB的中点坐标是P(-,),求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分l3分)
设椭圆的焦点分别为,直线轴于点,且.
(1)试求椭圆的方程;

 

 
  (2)过分别作互相垂直的两直线与椭圆分别

       交于四点(如图所示),试求四边形面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

己知椭圆C:的左、右焦点为,离心率为。直线轴、轴分别交于点A、B,M是直线椭圆C的一个公共点,P是点关于直线的对称点,设
(1)证明:                                 
(2)确定的值,使得是等腰三角形。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴,直线轴于点.若,则椭圆的离心率是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等腰梯形中,,且。设以为焦点且过点的双曲线的离心率为,以为焦点且过点的椭圆的离心率为,则=          

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

 、是椭圆的两个焦点,为椭圆上一点,且∠,则
Δ的面积为(   )
A             B           C          D 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆的两个焦点,为椭圆上一点,且,若的面积为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是   (  ▲  )
A.B.C.D.

查看答案和解析>>

同步练习册答案