已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且=λ(λ>0).过A、B两点分别作抛物线的切线,设其交点为M.
(Ⅰ)证明·为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.
附加题(理科学生做)
解:(Ⅰ)由已知条件,得F(0,1),λ>0.设A(x1,y1),B(x2,y2).由=λ,
即得 (-x1,1-y)=λ(x2,y2-1),
将①式两边平方并把y1=x12,y2=x22代入得 y1=λ2y2 ③
解②、③式得y1=λ,y2=,且有x1x2=-λx22=-4λy2=-4,
抛物线方程为y=x2,求导得y′=x.
所以过抛物线上A、B两点的切线方程分别是
y=x1(x-x1)+y1,y=x2(x-x2)+y2,即y=x1x-x12,y=x2x-x22.
解出两条切线的交点M的坐标为(,)=(,-1). ……4分
所以·=(,-2)·(x2-x1,y2-y1)=(x22-x12)-2(x22-x12)=0
所以·为定值,其值为0. ……7分
(Ⅱ)由(Ⅰ)知在△ABM中,FM⊥AB,因而S=|AB||FM|.
|FM|===
==+.
因为|AF|、|BF|分别等于A、B到抛物线准线y=-1的距离,所以
|AB|=|AF|+|BF|=y1+y2+2=λ++2=(+)2.
于是 S=|AB||FM|=(+)3,
由+≥2知S≥4,且当λ=1时,S取得最小值4.
科目:高中数学 来源:设计选修数学2-1苏教版 苏教版 题型:044
如图,已知抛物线x2=4y与圆x2+y2=32相交于A、B两点,圆与y轴正半轴交于C点,直线l是圆的切线,交抛物线于M、N,并且切点在上,
(1)求A、B、C点的坐标;
(2)当M、N两点到抛物线焦点距离和最大时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源:吉林省东北师大附中2009届高三第三次摸底考试(数学理) 题型:044
已知抛物线x2=4y,过定点M0(0,m)(m>0)的直线l交抛物线于A、B两点.
(Ⅰ)分别过A、B作抛物线的两条切线,A、B为切点,求证:这两条切线的交点P(x0,y0)在定直线y=-m上.
(Ⅱ)当m>2时,在抛物线上存在不同的两点P、Q关于直线l对称,弦长|PQ|中是否存在最大值?若存在,求其最大值(用m表示),若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年上海交大附中高三数学理总复习二圆锥曲线的综合问题练习卷(解析版) 题型:选择题
已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为( )
A. B.
C.1 D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
已知抛物线x2=4y的焦点为F,A、B是抛物线上的两动点,且=λ(λ>0).过A、B两点分别作抛物线的切线,设其交点为M.
(Ⅰ)证明·为定值;(Ⅱ)设△ABM的面积为S,写出S=f(λ)的表达式,并求S的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com