精英家教网 > 高中数学 > 题目详情
已知集合M={x|
1+x
1-x
≥0},则∁RM=(  )
A、{x|-1<x<1}
B、{x|-1<x≤1}
C、{x|x<-1或x≥1}
D、{x|x≤-1或x≥1}
考点:补集及其运算
专题:集合
分析:先由不等式性质求出集合M={x|
1+x
1-x
≥0}={x|-1≤x<1},由此能求出∁RM.
解答: 解:∵集合M={x|
1+x
1-x
≥0}={x|-1≤x<1},
∴∁RM={x|x<-1或x≥1}.
故选:C.
点评:本题考查集合的补集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正四棱锥的顶点都在同一球面上,若该棱锥的体积为
16
3
,底面边长为2,则该球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足iz=2+4i,i为虚数单位,则在复平面内z对应的点的坐标是(  )
A、(4,2)
B、(4,-2)
C、(2,4)
D、(2,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边上的中点,连接OD交圆O与点M.
(1)求证:DE是圆O的切线;
(2)求证:DE•BC=DM•AC+DM•AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2+kx+1,g(x)=(x+1)ln(x+1),h(x)=f(x)+g′(x).
(Ⅰ)若函数g(x)的图象在原点处的切线l与函数f(x)的图象相切,求实数k的值;
(Ⅱ)若h(x)在[0,2]上单调递减,求实数k的取值范围;
(Ⅲ)若对于?t∈[0,
e
-1],总存在x1,x2∈(-1,4),且x1≠x2满f(xi)=g(t)(i=1,2),其中e为自然对数的底数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.
(1)求BD长;
(2)当CE⊥OD时,求证:AO=AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点R(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M(x,y)在直线PQ上,且2
PM
+3
MQ
=0,
RP
PM
=0,则4x+2y-3的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

任取实数a,b∈[-1,1],则a,b满足|b|≥|
a
2
|的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(ax-1)(a>0,且a≠1)
(1)证明函数f(x)的图象在y轴的一侧
(2)设A(x1,y1),B(x2,y  2)(x1<x2)图象上两点,证明直线AB的斜率大于0.

查看答案和解析>>

同步练习册答案