精英家教网 > 高中数学 > 题目详情

【题目】设函数.

1)若曲线在点处的切线与直线垂直,求的单调性和极小值(其中为自然对数的底数);

2)若对任意的恒成立,求的取值范围.

【答案】1)单调递减区间为,单调递增区间为,极小值为;(2.

【解析】

1)由题意可得,可求得的值,利用导数可求得函数的单调区间和极小值;

2)由,构造函数,可知函数在区间上单调递减,可转化为对任意的恒成立,由参变量分离法得出对任意的恒成立,求出二次函数上的最大值,进而可得出实数的取值范围.

1

由于曲线在点处的切线与直线垂直,则,可得.

此时,,定义域为,令,得.

列表如下:

极小值

所以,函数的单调递减区间为,单调递增区间为

函数的极小值为

2)由

,则

由于,所以,函数上单调递减,

,由题意可知对任意的恒成立,可得

对于二次函数

时,函数取得最大值.

因此,实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,过点且与轴垂直的直线被椭圆截得的线段长为,且与短轴两端点的连线相互垂直.

1)求椭圆的方程;

2)若圆上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学生考试中答对但得不了满分的原因多为答题不规范,具体表现为:解题结果正确,无明显推理错误,但语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等,记此类解答为“类解答”为评估此类解答导致的失分情况,某市教研室做了项试验:从某次考试的数学试卷中随机抽取若干属于“类解答”的题目,扫描后由近百名数学老师集体评阅,统计发现,满分12分的题,阅卷老师所评分数及各分数所占比例大约如下表:

教师评分(满分12分)

11

10

9

各分数所占比例

某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和前两评中较高的分数的平均分为该题得分.(假设本次考试阅卷老师对满分为12分的题目中的“类解答”所评分数及比例均如上表所示,比例视为概率,且一、二评与仲裁三位老师评分互不影响).

1)本次数学考试中甲同学某题(满分12分)的解答属于“类解答”,求甲同学此题得分的分布列及数学期望;

2)本次数学考试有6个解答题,每题满分12分,同学乙6个题的解答均为“类解答”.

①记乙同学6个题得分为的题目个数为计算事件的概率.

②同学丙的前四题均为满分,第5题为“类解答”,第6题得8.以乙、丙两位同学解答题总分均值为依据,谈谈你对“类解答”的认识.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某购物商场分别推出支付宝和微信扫码支付购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.现统计了活动刚推出一周内每天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次,统计数据如下表所示:

1)根据散点图判断,在推广期内,扫码支付的人次关于活动推出天数的回归方程适合用来表示,求出该回归方程,并预测活动推出第天使用扫码支付的人次;

2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:

支付方式

现金

会员卡

扫码

比例

商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.现有一名顾客购买了元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少?

参考数据:设

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接年北京冬季奥运会,普及冬奥知识,某校开展了冰雪答题王冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了名学生,将他们的比赛成绩(满分为分)分为组:,得到如图所示的频率分布直方图.

1)求的值;

2)记表示事件从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于,估计的概率;

3)在抽取的名学生中,规定:比赛成绩不低于分为优秀,比赛成绩低于分为非优秀.请将下面的列联表补充完整,并判断是否有的把握认为比赛成绩是否优秀与性别有关

优秀

非优秀

合计

男生

女生

合计

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数),是函数的一个极值点.

1)求函数的单调递增区间;

2)设,若,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校同时提供两类线上选修课程,类选修课每次观看线上直播分钟,并完成课后作业分钟,可获得积分分;类选修课每次观看线上直播分钟,并完成课后作业分钟,可获得积分分.每周开设次,共开设周,每次均为独立内容,每次只能选择类、类课程中的一类学习.当选择类课程次,类课程次时,可获得总积分共_______分.如果规定学生观看直播总时间不得少于分钟,课后作业总时间不得少于分钟,则通过线上选修课的学习,最多可以获得总积分共________分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线过点,倾斜角为.以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程

1)写出直线的参数方程及曲线的直角坐标方程;

2)若相交于两点,为线段的中点,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】年是打赢蓝天保卫战三年行动计划的決胜之年,近年来,在各地各部门共同努力下,蓝天保卫战各项任务措施稳步推进,取得了积极成效,某学生随机收集了甲城市近两年上半年中各天的空气量指数,得到频数分布表如下:

年上半年中天的频数分布表

的分组

天数

年上半年中天的频数分布表

的分组

天数

1)估计年上半年甲城市空气质量优良天数的比例;

2)求年上半年甲城市的平均数和标准差的估计值(同一组中的数据用该组区间的中点值为代表);(精确到

3)用所学的統计知识,比较年上半年与年上半年甲城市的空气质量情况.

附:

的分组

空气质量

轻度污染

中度污染

重度污染

严重污染

.

查看答案和解析>>

同步练习册答案