精英家教网 > 高中数学 > 题目详情

【题目】已知:函数fx= a>0a≠1.

(Ⅰ)求函数fx)的定义域;

(Ⅱ)判断函数fx)的奇偶性,并加以证明;

(Ⅲ)设a=,解不等式fx>0.

【答案】(1) -11);(2)见解析;(3) {x|-1<x<0}

【解析】试题分析:(I根据对数函数有意义可知真数要大于0列不等式组,解之即可求出函数的定义域;根据函数的奇偶性的定义进行判定,计箄的关系从而确定函数的奇偶性;(代入,根据函数的定义域和函数的单调性列不等式组解之即可求出的范围.

试题解析:(Ⅰ)由题知: ,解得:-1<x<1,所以函数fx)的定义域为(-11);

(Ⅱ)奇函数,

证明:因为函数fx)的定义域为(-11),所以对任意x∈-11),

f-x= ==-fx

所以函数fx)是奇函数;

(Ⅲ)由题知: 即有,解得:-1<x<0

所以不等式fx>0的解集为{x|-1<x<0}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(已知函数f(x)= ,则y=f(x)的图象大致为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产一种产品的固定成本(即固定投入)为0.5万元,但每生产一百件这样的产品,需要增加可变成本(即另增加投入)0.25万元. 市场对此产品的年需求量为500件,销售的收入函数为= (单位:万元),其中是产品售出的数量(单位:百件).

(1)该公司这种产品的年产量为百件,生产并销售这种产品所得到的利润为当年产量的函数,求;

(2)当年产量是多少时,工厂所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,在课堂上,李老师请学生画出自行车行进路程s(千米)与行进时间x(秒)的函数图象的示意图,你认为正确的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资根据长期收益率市场预测投资类产品的收益与投资额成正比投资类产品的收益与投资额的算术平方根成正比已知投资1万元时两类产品的收益分别为0125万元和05万元

1分别写出两类产品的收益与投资额的函数关系;

2该家庭有20万元资金全部用于理财投资问:怎么分配资金能使投资获得最大收益其最大收益是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,D是A1B1的中点.
(1)求证:A1C∥平面BDC1
(2)若AB⊥AC,且AB=AC= AA1 , 求二面角A﹣BD﹣C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知右焦点为F(c,0)的椭圆M: =1(a>b>0)过点 ,且椭圆M关于直线x=c对称的图形过坐标原点.
(1)求椭圆M的方程;
(2)过点(4,0)且不垂直于y轴的直线与椭圆M交于P,Q两点,点Q关于x轴的对称原点为E,证明:直线PE与x轴的交点为F.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图C,D是以AB为直径的圆上的两点,,F是AB上的一点,且,将圆沿AB折起,使点C在平面ABD的射影E在BD上,已知

1求证:AD平面BCE

(2)求证AD//平面CEF;

(3)求三棱锥A-CFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,函数f(x)=ax2+bx+c,若x0满足关于x的方程2ax+b=0,则下列选项的命题中为假命题的是(
A.x∈R,f(x)≤f(x0
B.x∈R,f(x)≥f(x0
C.x∈R,f(x)≤f(x0
D.x∈R,f(x)≥f(x0

查看答案和解析>>

同步练习册答案