精英家教网 > 高中数学 > 题目详情

【题目】已知直线l经过点(1,﹣2),且与直线m:4x﹣3y+1=0平行;
(1)求直线l的方程;
(2)求直线l被圆x2+y2=9所截得的弦长.

【答案】
(1)解:由题意知l∥m,设l的方程为4x﹣3y+c=0,

∵点(1,﹣2)在直线l上,

∴4×1﹣3×(﹣2)+c=0,解得c=﹣10,

∴直线l的方程为4x﹣3y﹣10=0


(2)解:设直线l与圆x2+y2=9相交与点A、B,

则|AB|=2 ,其中r=3,

且d为圆心(0,0)到直线l:4x﹣3y﹣10=0的距离,

d= =2,

∴|AB|=2 = =


【解析】(1)根据l∥m,设l的方程为4x﹣3y+c=0,把点(1,﹣2)代入求出c的值,可得l的直线方程;(2)利用点到直线的距离公式求出圆心到直线l的距离,利用弦长公式求出直线l被圆C截得的弦长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数)在点处的切线经过点

(Ⅰ)讨论函数的单调性;

(Ⅱ)若,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解高三年级学生寒假期间的学习情况,某学校抽取了甲、乙两班作为对象,调查这两个班的学生在寒假期间平均每天学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生平均每天学习时间在区间的有8人.

(I)求直方图中的值及甲班学生平均每天学习时间在区间的人数;

(II)从甲、乙两个班平均每天学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: =(2sinx,2cosx), =(cosx,﹣cosx),f(x)=
(1)若 共线,且x∈( ,π),求x的值;
(2)求函数f(x)的周期;
(3)若对任意x∈[0, ]不等式m﹣2≤f(x)≤m+ 恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】方程 =﹣1表示的曲线即为函数y=f(x),有如下结论:( ) ①函数f(x)在R上单调递减;
②函数F(x)=4f(x)+3x不存在零点;
③函数y=f(x)的值域是R;
④若函数g(x)和f(x)的图象关于原点对称,则函数y=g(x)的图象就是方程 =﹣1确定的曲线.
其中所有正确的命题序号是(
A.①②
B.②③
C.①③④
D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我市九龙江南岸江滨路建设的持续推进,未来市民将新增又一休闲好去处,据悉南江滨路建设工程规划配套建造一个长方形公园ABCD,如图所示,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成,已知休闲区A1B1C1D1的面积为4000m2 , 人行道的宽度分别为4m和10m.

(1)若休闲区的长A1B1=x m,求公园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).

晋级成功

晋级失败

合计

16

50

合计

(Ⅰ)求图中的值;

(Ⅱ)根据已知条件完成下面列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?

(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望

(参考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin ωxcos ωx-sin2ωx+1(ω>0)图象的相邻两条对称轴之间的距离为.

()ω的值及函数f(x)的单调递减区间;

()如图在锐角三角形ABC中有f(B)=1若在线段BC上存在一点D使得AD=2ACCD-1求三角形ABC的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答
(1)设全集为R,A={x|3<x<7},B={x|4<x<10},求R(A∪B)及(RA)∩B.
(2)C={x|a﹣4≤x≤a+4},且A∩C=A,求a的取值范围.

查看答案和解析>>

同步练习册答案