【题目】中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互变化、对称统一的形式美、和谐美.给出定义:能够将圆(为坐标原点)的周长和面积同时平分的函数称为这个圆的“优美函数”.给出下列命题:
①对于任意一个圆,其“优美函数”有无数个;
②函数可以是某个圆的“优美函数”;
③正弦函数可以同时是无数个圆的“优美函数”;
④函数是“优美函数”的充要条件为函数的图象是中心对称图形.
A.①④B.①③④C.②③D.①③
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)是奇函数,且满足f(3-x)=f(x),f(-1)=3,数列{an}满足a1=1且an=n(an+1-an)(n∈N*),则f(a36)+f(a37)=( )
A. B. C. 2D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线:的焦点为,直线与交于,两点,且与轴交于点.
(1)若直线的斜率,且,求的值;
(2)若,轴上是否存在点,总有?若存在,求出点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,点在椭圆上.
()求椭圆的标准方程.
()是否存在斜率为的直线,使得当直线与椭圆有两个不同交点,时,能在直线上找到一点,在椭圆上找到一点,满足?若存在,求出直线的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,离心率等于,该椭圆的一个长轴端点恰好是抛物线的焦点.
(1)求椭圆的方程;
(2)已知直线与椭圆的两个交点记为、,其中点在第一象限,点、是椭圆上位于直线两侧的动点.当、运动时,满足,试问直线的斜率是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A(2,4)
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,o)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底数).
(1)求函数的极值;
(2)问:是否存在实数,使得有两个相异零点?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com