精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=log0.5(x-1)x∈[3,5],
(1)设g(x)=f-1(x),求g(x)的解析式;
(2)是否存在实数m,使得关于x的不等式2xg(2x)-mg(x)+1≤0有解?若存在,求m的取值范围;若不存在,说明理由.

分析 (1)设g(x)=f-1(x),利用求反函数的方法求g(x)的解析式;
(2)令t=$(\frac{1}{2})^{x}$+1(x∈[-2,-1]),t∈[3,5],2xg(2x)-mg(x)+1≤0,即m≥1+$\frac{1}{{t}^{2}-t}$,求出右边的最小值,即可得出结论.

解答 解:(1)x∈[3,5],f(x)=log0.5(x-1)∈[-2,-1],
由y=f(x)=log0.5(x-1),可得x=$(\frac{1}{2})^{y}$+1,
∴g(x)=f-1(x)=$(\frac{1}{2})^{x}$+1(x∈[-2,-1]);
(2)令t=$(\frac{1}{2})^{x}$+1(x∈[-2,-1]),t∈[3,5]
2xg(2x)-mg(x)+1≤0,即m≥1+$\frac{1}{{t}^{2}-t}$,
∵t∈[3,5],
∴1+$\frac{1}{{t}^{2}-t}$的最小值为$\frac{21}{20}$,
∴m≥$\frac{21}{20}$.

点评 本题考查反函数的求法,考查有解问题,考查函数最小值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.一个几何体的三视图如图所示,则这个几何体的体积为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若tanα=2,则$\frac{sinα-cosα}{sinα+cosα}$的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为36,焦距为12,则椭圆的方程为(  )
A.$\frac{x^2}{36}+\frac{y^2}{64}=1$B.$\frac{x^2}{100}+\frac{y^2}{64}=1$
C.$\frac{x^2}{36}+\frac{y^2}{64}=1或\frac{x^2}{64}+\frac{y^2}{36}=1$D.$\frac{x^2}{100}+\frac{y^2}{64}=1$或$\frac{x^2}{64}+\frac{y^2}{100}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若角α满足cosα>0,tanα<0,则α为第四象限的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某省工商局于2014年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x饮料的合格率为80%,现有甲、乙、丙3人聚会,选用6瓶x饮料,并限定每人喝2瓶.则甲喝2瓶合格的x饮料的概率是0.64(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=loga(2-ax)在[0,1]上为减函数,则实数a的取值范围是(  )
A.1<a<2B.$\frac{1}{2}$<a<1C.$\frac{1}{2}$<a<2D.a=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l1的方程为3x+4y-12=0,求满足下列条件的直线l的方程.
(1)l∥l1,且直线l过点(-1,3);
(2)l⊥l1,且直线l过点(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosα\\ y=2+2sinα\end{array}\right.(α$为参数),M是曲线C1上的动点,且M是线段OP的中点,P点的轨迹为曲线C2,直线l的极坐标方程为$ρsin({x+\frac{π}{4}})=\sqrt{2}$,直线l与曲线C2交于A,B两点.
(1)求曲线C2的普通方程;
(2)求线段 AB的长.

查看答案和解析>>

同步练习册答案