分析 (1)设g(x)=f-1(x),利用求反函数的方法求g(x)的解析式;
(2)令t=$(\frac{1}{2})^{x}$+1(x∈[-2,-1]),t∈[3,5],2xg(2x)-mg(x)+1≤0,即m≥1+$\frac{1}{{t}^{2}-t}$,求出右边的最小值,即可得出结论.
解答 解:(1)x∈[3,5],f(x)=log0.5(x-1)∈[-2,-1],
由y=f(x)=log0.5(x-1),可得x=$(\frac{1}{2})^{y}$+1,
∴g(x)=f-1(x)=$(\frac{1}{2})^{x}$+1(x∈[-2,-1]);
(2)令t=$(\frac{1}{2})^{x}$+1(x∈[-2,-1]),t∈[3,5]
2xg(2x)-mg(x)+1≤0,即m≥1+$\frac{1}{{t}^{2}-t}$,
∵t∈[3,5],
∴1+$\frac{1}{{t}^{2}-t}$的最小值为$\frac{21}{20}$,
∴m≥$\frac{21}{20}$.
点评 本题考查反函数的求法,考查有解问题,考查函数最小值的求法,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{x^2}{36}+\frac{y^2}{64}=1$ | B. | $\frac{x^2}{100}+\frac{y^2}{64}=1$ | ||
C. | $\frac{x^2}{36}+\frac{y^2}{64}=1或\frac{x^2}{64}+\frac{y^2}{36}=1$ | D. | $\frac{x^2}{100}+\frac{y^2}{64}=1$或$\frac{x^2}{64}+\frac{y^2}{100}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1<a<2 | B. | $\frac{1}{2}$<a<1 | C. | $\frac{1}{2}$<a<2 | D. | a=$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com