精英家教网 > 高中数学 > 题目详情

【题目】如图,两圆外切于点T, PQ为的弦,直线PT、QT分别交于点R、S,分别过P、Q作的切线依次交于A、B、D、C,直线RD、SA分别交PQ于E、F。求证:

【答案】见解析

【解析】

如图,延长CA至点M,联结TA、TF、SR、SD、SC、AD.

易知SR//PQ故∠PFA=∠ASR=∠PTA.从而,P、F、T、A四点共圆.

于是,∠FAD=∠FAT+∠TAD=∠FPT+∠TSD=∠TQD+∠TSD=∠SDC=∠SAC.

则AF平分∠DAM.

同理,延长BD至点N,可证DE平分∠ADN.

又∠SFT=∠APT=∠SQP有△SFT~△SQF.

于是,.

同理可得.

故SF=SD=SC,即S为△FCD的外心.从而,.

则CF平分∠ACD,所以,F为△ADC的旁心,

同理知E为△DAB的旁心.

因此,∠EAF=∠FAD-∠EAD

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足,数列的前项为,满足

(Ⅰ)设,求证:数列为等比数列;

(Ⅱ)求的通项公式;

(Ⅲ)若对任意的恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为2的菱形,,平面,点是棱的中点.

(1)证明:平面

(2)当时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A4纸是生活中最常用的纸规格.A系列的纸张规格特色在于:①A0A1A2A5,所有尺寸的纸张长宽比都相同.②在A系列纸中,前一个序号的纸张以两条长边中点连线为折线对折裁剪分开后,可以得到两张后面序号大小的纸,比如1A0纸对裁后可以得到2A1纸,1A1纸对裁可以得到2A2纸,依此类推.这是因为A系列纸张的长宽比为1这一特殊比例,所以具备这种特性.已知A0纸规格为84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4纸的长度为(  )

A.厘米B.厘米C.厘米D.厘米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的方程为,直线l的方程为,点P在直线l上,过点P作圆的切线PAPB,切点为AB.

1)若,求点P的坐标;

2)求证:经过AP三点的圆必经过异于的某个定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某超市,随机调查了100名顾客购物时使用手机支付的情况,得到如下的列联表,已知从其中使用手机支付的人群中随机抽取1人,抽到青年的概率为.

青年

中老年

合计

使用手机支付

60

不使用手机支付

28

合计

100

1)根据已知条件完成列联表,并根据此资料判断是否有99.9%的把握认为超市购物用手机支付与年龄有关”.

2)现按照使用手机支付不使用手机支付进行分层抽样,从这100名顾客中抽取容量为5的样本,求从样本中任选3人,则3人中至少2人使用手机支付的概率.

(其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合S={1,2,3,4,5,6},一一映射f:S→S满足条件对于任意的x∈S,f(f(f(x)))=x。则满足条件的映射f的个数是( )。

A. 81 B. 80 C. 40 D. 27

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥PA1B1C1D1,下部的形状是正四棱柱ABCDA1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.

(1)若AB=6 m,PO1=2 m,则仓库的容积是多少?

(2)若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给图中ABCDEF六个区域进行染色,每个区域只染一种颜色,且相邻的区域不同色.若有4种颜色可供选择,则共有___种不同的染色方案.

查看答案和解析>>

同步练习册答案