精英家教网 > 高中数学 > 题目详情

【题目】本小题满分12为定义在R上的偶函数,当时,

1求函数在R上的解析式;

2在直角坐标系中画出函数的图象;

3若方程-k=0有四个解,求实数k的取值范围.

【答案】1(2)见解析;(3)见解析

【解析】

试题分析:1第一步求函数解析式,由已知当时,,只需求出的解析式即可,可借助偶函数的定义联系的关系得以解决;2在直角坐标系上,按着解析式的要求画出两抛物线相应的部分;3根据化归思想,把方程的实根个数问题转化为曲线与直线的交点个数问题,借助数形结合把问题解决.

试题解析:1由已知当时,.只需求出的解析式即可.

由于为定义在R上的偶函数,则,则

,则

图象如图所示

3由于方程的解就是函数的图象与直线的交点的横坐标,观察函数图象与直线的交点情况可知,当时,函数图象与直线有四个交点,即方程有四个解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:
A型车

出租天数

1

2

3

4

5

6

7

车辆数

5

10

30

35

15

3

2

B型车

出租天数

1

2

3

4

5

6

7

车辆数

14

20

20

16

15

10

5


(1)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;
(2)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;
(3)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:

意味着每增加一个单位,平均增加8个单位

投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件

互斥事件不一定是对立事件,但对立事件一定是互斥事件

在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型

其中正确的命题有__________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极点为直角坐标系的原点,极轴为x轴正半轴且单位长度相同的极坐标系中曲线C1:ρ=1, (t为参数).
(Ⅰ)求曲线C1上的点到曲线C2距离的最小值;
(Ⅱ)若把C1上各点的横坐标都扩大为原来的2倍,纵坐标扩大为原来的 倍,得到曲线 .设P(﹣1,1),曲线C2 交于A,B两点,求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面上,点A、C为射线PM上的两点,点B、D为射线PN上的两点,则有 (其中SPAB、SPCD分别为△PAB、△PCD的面积);空间中,点A、C为射线PM上的两点,点B、D为射线PN上的两点,点E、F为射线PL上的两点,则有 =(其中VPABE、VPCDF分别为四面体P﹣ABE、P﹣CDF的体积).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,且,设函数上单调递减, 函数上为增函数, 为假, 为真,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过A(0,1)和且与x轴相切的圆只有一个,求的值及圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 ,过点P(3,6)的直线l与C相交于A,B两点,且AB的中点为N(12,15),则双曲线C的离心率为(
A.2
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知1丈为10尺,该锲体的三视图如图所示,则该锲体的体积为(
A.10000立方尺
B.11000立方尺
C.12000立方尺
D.13000立方尺

查看答案和解析>>

同步练习册答案