精英家教网 > 高中数学 > 题目详情
12.近年来,某地雾霾污染指数达到重度污染级别.经环保部门调查,该地工厂废气排放污染是形成雾霾的主要原因.某科研单位进行了科技攻关,将工业废气中的某些成分转化为一中可利用的化工产品.已知该项目每年投入资金3000万元,设每年处理工厂废气量为x万升,每万升工厂废气处理后得到可利用的化工产品价值为c(x)万元,其中c(x)=$\left\{\begin{array}{l}{-3x+\frac{20}{x}+192,0<x≤50}\\{-\frac{7200}{{x}^{2}}+\frac{3640}{x}-2,x>50}\end{array}\right.$.设该单位的年利润为f(x)(万元).
(I)求年利润f(x)(万元)关于处理量x(万升)的函数表达式;
(II)该单位年处理工厂废气量为多少万升时,所获得的利润最大,并求出最大利润?

分析 (I)利用f(x)=xc(x)-3000,即可得出结论;
(II)分段讨论,0<x≤50时,f(x)=xc(x)-3000=-3x2+192x-2980,x=32时,f(x)max=f(32)=92;x>50时,f(x)=xc(x)-3000=-$\frac{7200}{x}$-2x+640=640-(2x+$\frac{7200}{x}$),利用基本不等式,可得结论.

解答 解:(I)0<x≤50时,f(x)=xc(x)-3000=-3x2+192x-2980,
x>50时,f(x)=xc(x)-3000=-$\frac{7200}{x}$-2x+640,
∴f(x)=$\left\{\begin{array}{l}{-3{x}^{2}+192x-2980,0<x≤50}\\{-\frac{7200}{x}-2x+640,x>50}\end{array}\right.$;
(II)0<x≤50时,f(x)=xc(x)-3000=-3x2+192x-2980,x=32时,f(x)max=f(32)=92;
x>50时,f(x)=xc(x)-3000=-$\frac{7200}{x}$-2x+640=640-(2x+$\frac{7200}{x}$)≤400,
当且仅当2x=$\frac{7200}{x}$,即x=60时,f(x)max=f(60)=400,
∵400>92,
∴该单位年处理工厂废气量为60万升时,所获得的利润最大,最大利润为400万元.

点评 本题考查了分段函数模型的应用题目,并且考查了求二次函数的最值,利用基本不等式求函数的最值等问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.如图,一个摩天轮的半径为8m,每12min旋转一周,最低点离地面为2m,若摩天轮边缘某点P从最低点按逆时针方向开始旋转,则点P离地面的距离h(m)与时间t(min)之间的函数关系是(  )
A.h=8cost+10B.h=-8cos$\frac{π}{3}$t+10C.h=-8sin$\frac{π}{6}$t+10D.h=-8cos$\frac{π}{6}$t+10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=2x2-lnx的递增区间是(  )
A.$(0,\frac{1}{2})$B.$(-\frac{1}{2},0)$和$(\frac{1}{2},+∞)$C.$(\frac{1}{2},+∞)$D.$(-∞,-\frac{1}{2})$和$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.自主招生,是高校选拔录取工作改革的重要环节,通过高考自主招生笔试和面试之后,可以得到相应的高考降分政策;某高中高一学生共有1000人,其中城填初中毕业生750名(称为“城填生“),农村初中毕业生250人(称为“农村生“);为了摸清学生是否愿意参加自主招生,以便安排自主招生培训,拟采用分层抽样的方法抽取100名学生进行调查;
(1)试完成下列2×2联表,并分析是否有95%以上的把握说“是否愿意参加自主招生“与生源有关.
愿意参加不愿意参加合计
城填生502575
农村生101525
合计6040100
(2)现对愿意参加自主招生的同学组织摸底考试,考试题共有5道题,每题20分,对于这5道题,考生“高富帅”完全会答的有3道,不完全会的有2道,不完全会的每道题她得分S的概率满足:SKIPIF 1<0,假设解答各题之间没有影响.
①对于一道不完全会的题,求“高富帅”得分的均值E(s);
②试求“高富帅”在本次摸底考试中总得分的数学期望.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x+a,g(x)=x+$\frac{4}{x}$,若?x1∈[1,3],?x2∈[1,4],使得f(x1)≥g(x2),则实数a的取值范围为(  )
A.a≥1B.a≥2C.a≥3D.a≥4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,为测量塔高AB,选取与塔底B在同一水平面内的两点C、D,在C、D两点处测得塔顶A的仰角分别为45°,30°,又测得∠CBD=30°,CD=50米,则塔高AB=(  )
A.50米B.25$\sqrt{3}$米C.25米D.50$\sqrt{3}$米

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和Sn=n2-n(n∈N*).正项等比数列{bn}的首项b1=1,且3a2是b2,b3的等差中项.
(I)求数列{an},{bn}的通项公式;
(II)若cn=an•bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.“数列{an}为等比数列”是“${a_{n+1}}^2={a_n}•{a_{n+2}}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设集合A、B均为实数集R的子集,记:A+B={a+b|a∈A,b∈B};
(1)已知A={0,1,2},B={-1,3},试用列举法表示A+B;
(2)设a1=$\frac{2}{3}$,当n∈N*,且n≥2时,曲线$\frac{x^2}{{{n^2}-n+1}}+\frac{y^2}{1-n}=\frac{1}{9}$的焦距为an,如果A={a1,a2,…,an},B=$\{-\frac{1}{9},-\frac{2}{9},-\frac{2}{3}\}$,设A+B中的所有元素之和为Sn,对于满足m+n=3k,且m≠n的任意正整数m、n、k,不等式Sm+Sn-λSk>0恒成立,求实数λ的最大值;
(3)若整数集合A1⊆A1+A1,则称A1为“自生集”,若任意一个正整数均为整数集合A2的某个非空有限子集中所有元素的和,则称A2为“N*的基底集”,问:是否存在一个整数集合既是自生集又是N*的基底集?请说明理由.

查看答案和解析>>

同步练习册答案