精英家教网 > 高中数学 > 题目详情
已知函数的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.
【答案】分析:(1)将(4,-1)代入已知条件,即可求得a的值;
(2)可判断f(x)=2-在∈[-,+∞)上减函数,f(0)•f(4)<0,从而可判断f(x)在其定义域上有且只有一个零点;
(3)可将f(x)+mx>1对一切的正实数x均成立,转化为m>=恒成立即可.
解答:解:(1)∵点(4,-1)在函数f(x)的图象上,
∴2-=-1,解之得a=2…2
(2)证明:由(1)得f(x)=2-,定义域为x∈[-,+∞)…3
∵y=在∈[-,+∞)上是增函数,
∴f(x)=2-在∈[-,+∞)上减函数,…5
又f(0)=1>0,f(4)=-1<0,
∴f(0)•f(4)<0,
∴f(x)在其定义域上有且只有一个零点;…7
(3)由题意得:2-+mx>1即mx>-1,
∵x>0,
∴m>…9
==
∴0<<1…11
要使原不等式对一切的正实数x均成立,只需m≥1,
∴m∈[1,+∞)…12
点评:本题考查函数恒成立问题,着重考查转化思想,难点在于(3)m>=的转化与应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(05年福建卷文)(12分)

已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为.

   (Ⅰ)求函数的解析式;

(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)

已知函数的图象过点,且在点处的切线方程为.

   (Ⅰ)求函数的解析式;

(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:2011年上海市卢湾区高考数学一模试卷(理科)(解析版) 题型:解答题

已知函数的图象过点A(3,7),则此函的最小值是   

查看答案和解析>>

科目:高中数学 来源:2015届四川省资阳市高一上学期期末质量检测数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知函数的图象过点,且图象上与点P最近的一个最低点是

(Ⅰ)求的解析式;

(Ⅱ)若,且为第三象限的角,求的值;

(Ⅲ)若在区间上有零点,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013届福建省高二下学期第一次阶段考数学理科试卷 题型:解答题

已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为.

(1)求函数的解析式;  (2)求函数的单调区间

 

查看答案和解析>>

同步练习册答案