分析 (1)由正方形性质得E为B1C的中点,从而DE∥AC,由此能证明DE∥平面AA1C1C.
(2)由线面垂直得AC⊥CC1,由AC⊥BC,得AC⊥平面BCC1B1,由此能证明BC1⊥平面AB1C.
解答 证明:(1)因为四边形BB1C1C为正方形,B1C∩BC1=E,所以E为B1C的中点,
又D为AB1的中点,因此DE∥AC.
又因为DE?平面AA1C1C,AC?平面AA1C1C,
所以DE∥平面AA1C1C.
(2)因为棱柱ABC-A1B1C1是三棱柱,AA1⊥底面ABC
所以CC1⊥平面 ABC.因为AC?平面ABC,所以AC⊥CC1.
又因为AC⊥BC,CC1?平面 BCC1 B1,BC?平面BCC1B1,BC∩CC1=C,
所以AC⊥平面BCC1B1.又因为BC1?平面BCC1B1,所以B1C⊥AC.
因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.
因为AC,B1C?平面B1AC,AC∩B1C=C,所以BC1⊥平面AB1C.
点评 本题考查线面平行的证明,考查线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1-{a}^{2}}{a}$ | B. | $\sqrt{1-{a}^{2}}$ | C. | $\frac{{a}^{2}-1}{a}$ | D. | -$\sqrt{1-{a}^{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com