精英家教网 > 高中数学 > 题目详情
6.实数a,b满足2a+2b=1,则a+b的取值范围是(  )
A.(-∞,-2]B.(-∞,-1]C.(-∞,-4]D.$(-∞,-\frac{1}{2}]$

分析 运用基本不等式和指数的运算性质,可得a+b的取值范围.

解答 解:2a+2b=1,
可得2a+2b≥2$\sqrt{{2}^{a}•{2}^{b}}$=2$\sqrt{{2}^{a+b}}$,
即有2a+b≤$\frac{1}{4}$,
可得a+b≤-2.
当且仅当a=b=-1取得等号.
故选:A.

点评 本题考查基本不等式的运用,注意满足的条件:一正二定三等,考查指数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知各项均不为零的数列{an}满足an+12=anan+2,且32a8-a3=0,记Sn是数列{an}的前n项和,则$\frac{{S}_{6}}{{a}_{1}-{S}_{3}}$的值为(  )
A.-$\frac{21}{8}$B.$\frac{21}{8}$C.-9D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列关于圆锥曲线的命题:
①设A,B为两个定点,P为动点,若|PA|+|PB|=8,则动点P的轨迹为椭圆;
②设A,B为两个定点,P为动点,若|PA|=10-|PB|,且|AB|=8,则|PA|的最大值为9;
③设A,B为两个定点,P为动点,若|PA|-|PB|=6,则动点P的轨迹为双曲线;
④双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{10}$=1与椭圆$\frac{{x}^{2}}{30}$+$\frac{{y}^{2}}{4}$=1有相同的焦点.
其中真命题的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={0,2,4,6,8,10},B={4,8},则∁AB=(  )
A.{4,8}B.{0,2,6,10}C.x>5D.x>3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.命题:对?x∈R,x3-x2+1≤0的否定是$?{x_0}∈R,x_0^3-x_0^2+1>0$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C1:x2+y2=2和圆C2,直线l与圆C1相切于点(1,1);圆C2的圆心在射线2x-y=0(x≥0)上,圆C2过原点,且被直线l截得的弦长为4$\sqrt{3}$.
(1)求直线l的方程;
(2)求圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知圆C:(x-2)2+(y-b)2=10,且圆C被x轴截得的弦长为2,
(1)求圆C的方程;
(2)若圆C的圆心在第一象限且直线y=kx+3(k>0)与圆C相交于A,B两点,求$\overrightarrow{OA}$$•\overrightarrow{OB}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知$F(-\sqrt{3},0)$,${F_2}(\sqrt{3},0)$,动点p满足|PF1|+|PF2|=4.
(1)求动点P的轨迹C的标准方程:
(2)不垂直于坐标轴的直线,与曲线C交于A、B两点,以AB为直径的圆过原点,且线段AB的垂直平分线交y轴于点$Q(0,-\frac{3}{2})$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.定义在R上的偶函数f(x)=$\frac{ax+b}{{x}^{2}+c}$的图象如图所示,则实数a、b、c的大小关系是b>c>a.

查看答案和解析>>

同步练习册答案