精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数f(x)=ax2+2x+c(a≠0),函数f(x)对于任意的都满足条件f(1+x)=f(1﹣x).
(1)若函数f(x)的图象与y轴交于点(0,2),求函数f(x)的解析式;
(2)若函数f(x)在区间(0,1)上有零点,求实数c的取值范围.

【答案】
(1)解:函数f(x)对于任意的都满足条件f(1+x)=f(1﹣x),

∴函数f(x)的对称轴为x=1,

∴﹣ =1,

解得a=﹣1,

∵函数f(x)的图象与y轴交于点(0,2),

∴c=2,

∴f(x)=﹣x2+2x+2


(2)解:∵函数f(x)在区间(0,1)上有零点,

∴f(0)f(1)<0,

∴c(﹣1+2+c)<0,

解得﹣1<c<0


【解析】(1)函数f(x)对于任意的都满足条件f(1+x)=f(1﹣x),得到函数f(x)的对称轴为x=1,即可求出a的值,再根据函数f(x)的图象与y轴交于点(0,2),求出c的值,问题得以解决.(2)根据函数零点的性质结合二次函数的性质即可得到结论.
【考点精析】关于本题考查的二次函数的性质,需要了解当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是矩形, ⊥平面.

(1)求证: ⊥平面

(2)求二面角余弦值的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x2﹣4x+a,g(x)=logax(a>0且a≠1).
(1)若函数f(x)在[﹣1,2m]上不具有单调性,求实数m的取值范围;
(2)若f(1)=g(1).
(ⅰ)求实数a的值;
(ⅱ)设 ,t2=g(x), ,当x∈(0,1)时,试比较t1 , t2 , t3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,比较与1的大小;

(2)当时,如果函数仅有一个零点,求实数的取值范围;

(3)求证:对于一切正整数,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,直线的参数方程为为参数),圆的极坐标方程为.

(1)求直线的普通方程与圆的直角坐标方程;

(2)设圆与直线交于两点,若点的直角坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域是一切实数,则m的取值范围是(
A.0<m≤4
B.0≤m≤1
C.m≥4
D.0≤m≤4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:

(1)求频率分布直方图中a的值;
(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;
(3)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)为定义在R上的奇函数,且在(0,+∞)内是增函数,又f(2)=0,则不等式x5f(x)>0的解集为(
A.(﹣2,0)∪(2,+∞)
B.(﹣∞,﹣2)∪(0,2)
C.(﹣2,0)∪(0,2)
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,定点为圆上一动点,线段的垂直平分线交线段于点,设点的轨迹为曲线

(Ⅰ)求曲线的方程;

(Ⅱ)若经过的直线交曲线于不同的两点,(点在点, 之间),且满足,求直线的方程.

查看答案和解析>>

同步练习册答案