Éèa¡¢bÊÇÁ½¸öʵÊýÇÒa£¼b£¬ÎÒÃǹ涨£º

(1)

Âú×ã²»µÈʽa¡Üx¡ÜbµÄʵÊýxµÄ¼¯ºÏ½Ð×ö________£¬±íʾΪ[a£¬b]£®

(2)

Âú×ã²»µÈʽa£¼x£¼bµÄʵÊýxµÄ¼¯ºÏ½Ð×ö¿ªÇø¼ä£¬±íʾΪ________£®

(3)

Âú×ã²»µÈʽa¡Üx£¼b»òa£¼x¡ÜbµÄʵÊýxµÄ¼¯ºÏ½Ð×ö°ë¿ª°ë±ÕÇø¼ä£¬·Ö±ð±íʾΪ________£¬________£®{x|x¡Ýa}£¬{x|x£¾a}£¬{x|x¡Üb}£¬{x|x£¼b}µÄʵÊýxµÄ¼¯ºÏ·Ö±ð±íʾΪ________£¬________£¬________£¬________£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèa£¬bÊÇÁ½¸öʵÊý£¬ÇÒa¡Ùb£¬ÓÐÏÂÁв»µÈʽ£º¢Ù£¨a+3£©2£¾2a2+6a+11£»¢Úa2+b2¡Ý2£¨a-b-1£©£»¢Ûa3+b3£¾a2b+ab2£»¢Ü
a
b
+
b
a
£¾2
£®ÆäÖкã³ÉÁ¢µÄÓУ¨¡¡¡¡£©
A¡¢1¸öB¡¢2¸öC¡¢3¸öD¡¢4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèa£¬bÊÇÁ½¸öʵÊý£¬ÇÒa¡Ùb£¬¢Ùa5+b5£¾a3b2+a2b3£¬¢Úa2+b2¡Ý2£¨a-b-1£©£¬¢Û
a
b
+
b
a
£¾2
£®ÉÏÊöÈý¸öʽ×Óºã³ÉÁ¢µÄÓУ¨¡¡¡¡£©
A¡¢0¸öB¡¢1¸öC¡¢2¸öD¡¢3¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf1(x)=3|x-p1|£¬f2(x)=2•3|x-p2|£¨x¡ÊR£¬p1£¬p2Ϊ³£Êý£©£®º¯Êýf£¨x£©¶¨ÒåΪ£º¶Ôÿ¸ö¸ø¶¨µÄʵÊýx£¬f(x)=
f1(x)Èôf1(x)¡Üf2(x)
f2(x)Èôf1(x)£¾f2(x)

£¨1£©Çóf£¨x£©=f1£¨x£©¶ÔËùÓÐʵÊýx³ÉÁ¢µÄ³ä·Ö±ØÒªÌõ¼þ£¨ÓÃp1£¬p2±íʾ£©£»
£¨2£©Éèa£¬bÊÇÁ½¸öʵÊý£¬Âú×ãa£¼b£¬ÇÒp1£¬p2¡Ê£¨a£¬b£©£®Èôf£¨a£©=f£¨b£©£¬ÇóÖ¤£ºº¯Êýf£¨x£©ÔÚÇø¼ä[a£¬b]Éϵĵ¥µ÷ÔöÇø¼äµÄ³¤¶ÈÖ®ºÍΪ
b-a
2
£¨±ÕÇø¼ä[m£¬n]µÄ³¤¶È¶¨ÒåΪn-m£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf1£¨x£©=lg|x-p1|£¬f2£¨x£©=lg£¨|x-p2|+2£©£¨x¡ÊR£¬p1£¬p2Ϊ³£Êý£©
º¯Êýf£¨x£©¶¨ÒåΪ¶Ôÿ¸ö¸ø¶¨µÄʵÊýx£¨x¡Ùp1£©£¬f(x)=
f1(x)f1(x)¡Üf2(x)
f2(x)f2(x)¡Üf1(x)

£¨1£©µ±p1=2ʱ£¬ÇóÖ¤£ºy=f1£¨x£©Í¼Ïó¹ØÓÚx=2¶Ô³Æ£»
£¨2£©Çóf£¨x£©=f1£¨x£©¶ÔËùÓÐʵÊýx£¨x¡Ùp1£©¾ù³ÉÁ¢µÄÌõ¼þ£¨ÓÃp1¡¢p2±íʾ£©£»
£¨3£©Éèa£¬bÊÇÁ½¸öʵÊý£¬Âú×ãa£¼b£¬ÇÒp1£¬p2¡Ê£¨a£¬b£©£¬Èôf£¨a£©=f£¨b£©ÇóÖ¤£ºº¯Êýf£¨x£©ÔÚÇø¼ä[a£¬b]Éϵ¥µ÷ÔöÇø¼äµÄ³¤¶ÈÖ®ºÍΪ
b-a
2
£®£¨Çø¼ä[m£¬n]¡¢£¨m£¬n£©»ò£¨m£¬n]µÄ³¤¶È¾ù¶¨ÒåΪn-m£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸