精英家教网 > 高中数学 > 题目详情
(2013•青岛二模)如图,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.现在沿AE将三角形ADE向上折起,在折起的图形中解答下列两问:

(Ⅰ)在线段AB上是否存在一点K,使BC∥面DFK?若存在,请证明你的结论;若不存在,请说明理由;
(Ⅱ)若面ADE⊥面ABCE,求证:面BDE⊥面ADE.
分析:(Ⅰ)线段AB上存在一点K,且当AK=
1
4
AB
时,BC∥面DFK;设H为AB的中点,连接EH,则BC∥EH,利用三角形的中位线定理即可证明FK∥BC,再利用线面平行的判定定理即可证明;
(II)利用勾股定理的逆定理即可证明BE⊥AE,又面ADE⊥面ABCE,利用面面垂直的性质可得BE⊥平面ADE,再利用面面垂直的判定定理即可证明结论.
解答:解:(Ⅰ)线段AB上存在一点K,且当AK=
1
4
AB
时,BC∥面DFK,
证明如下:
设H为AB的中点,连接EH,则BC∥EH,
又∵AK=
1
4
AB
,F为AE的中点,
∴KF∥EH,∴KF∥BC,
∵KF?面DFK,BC?面DFK,
∴BC∥面DFK.
(II)∵在折起前的图形中E为CD的中点,AB=2,BC=1,
∴在折起后的图形中:AE=BE=
2

从而AE2+BE2=4=AB2
∴AE⊥BE.
∵面ADE⊥面ABCE,面ADE∩面ABCE=AE,
∴BE⊥平面ADE,
∵BE?平面BDE,∴面BDE⊥面ADE.
点评:熟练掌握三角形的中位线定理、线面平行的判定定理、勾股定理的逆定理、面面垂直的性质和判定定理、线面垂直的判定定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•青岛二模)一同学为研究函数f(x)=
1+x2
+
1+(1-x)2
(0≤x≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC点P是边BC上的一动点,设CP=x,则AP+PF=f(x),请你参考这些信息,推知函数g(x)=4f(x)-9的零点的个数是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)若a,b∈R,i是虚数单位,a+(b-2i)i=1+i,则a+b为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)“a≥3”是“?x∈[1,2],x2-a≤0”为真命题的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)执行如图所示的程序框图.若输出S=31,则框图中①处可以填入(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•青岛二模)下列函数中,与函数y=
1
3x
定义域相同的函数为(  )

查看答案和解析>>

同步练习册答案