精英家教网 > 高中数学 > 题目详情

【题目】已知函数为奇函数,且相邻两对称轴间的距离为

(1)当时,求的单调递减区间;

(2)将函数的图象沿轴正方向向右平移个单位长度,再把横坐标缩短为原来的(纵坐标不变),得到函数的图象,当时,求函数的值域.

【答案】(1)

(2)

【解析】

(1)首先求得函数的解析式,然后结合三角函数的性质和函数的定义域即可确定其单调递减区间;

(2)首先求得函数的解析式,然后结合函数的定义域和三角函数的性质即可确定其值域.

(1)函数

且相邻两对称轴间的距离为,可得,求得.

再根据f(x)为奇函数,可得,,

,.

由于,故

时函数单调递减.

的单调递减区间为.

(2)将函数y=f(x)的图象沿x轴方向向右平移个单位长度,可得函数的图象;

再把横坐标缩短到原来的(纵坐标不变),得到函数的图象,

,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体上任意选择个顶点,然后将它们两两相连,则可能组成的几何图形为_________(写出所有正确结论的编号).

①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】f(x)="xln" x–ax2+(2a–1)xaR.

)令g(x)=f'(x),求g(x)的单调区间;

)已知f(x)x=1处取得极大值.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,

)求证

)求二面角的大小;

)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,已知侧面,点在棱上.

(1)求的长,并证明平面

(2)若,试确定的值,使得到平面的距离为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面平面,且位于之间.点.

1)求证:.

2)设ADCF不平行,且ABCD为定点,间的距离为间的距离为h.当的值是多少时,的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论的单调性;

(Ⅱ)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l与圆C交于AB两点,P是圆C上不同于AB的任意一点.

(1)求圆心的极坐标;

(2)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,梯形中,,,, ,将沿对角线折起.设折起后点的位置为,并且平面 平面.给出下面四个命题:

;②三棱锥的体积为;③ 平面

平面平面.其中正确命题的序号是( )

A. ①② B. ③④ C. ①③ D. ②④

查看答案和解析>>

同步练习册答案