精英家教网 > 高中数学 > 题目详情
某校高一年段理科有8个班,在一次数学考试中成绩情况分析如下:
班级12345678
大于145分
人数
66735337
不大于145分
人数
3939384240424238
(1)求145分以上成绩y对班级序号x的回归直线方程.(精确到0.0001)
(2)能否在犯错误的概率不超过0.01的前提下认为7班与8班的成绩是否优秀(大于145分)与班级有关系.
友情提示:
8
i=1
xiyi
=171;
i=1
^∑
x
2
i
=204
考点:独立性检验的应用
专题:应用题,概率与统计
分析:(1)根据所给的数据,做出变量x,y的平均数,根据最小二乘法做出线性回归方程的系数b,在根据样本中心点一定在线性回归方程上,求出a的值,从而求出线性回归方程;
(2)我们可以根据数据得到列联表,将数据代入公式K2,计算出K2值,然后代入离散系数表,比较即可得到答案.
解答: 解 (1)
.
x
=4.5
.
y
=5
8
i=1
 xiyi=171
8
i=1
 
x
2
i
=204
b=
8
i=1
 xiyi-8
.
x
.
y
8
i=1
 
x
2
i
-8
.
x
2
=
171-8×4.5×5
204-8×4.52
=-
9
42
≈-0.2143
…(3分)
a=
.
y
-b
.
x
=5-(-0.2143)×4.5≈
5.9643,
∴回归直线方程为:
y
=bx+a
=-0.2143x+5.9643 …(6分)
(2)k2=
90(3×38-42×7)2
45×45×80×10
=1.8

因为 1.8<6.635,
所以在犯错误的概率不超过0.01的前提下不能认为7班与8班的成绩是否优秀(高于145分)与班级有关系. …(12分)
点评:本题考查线性回归方程和最小二乘法,以及独立性检验,独立性检验的应用的步骤为:根据已知条件将数据归结到一个表格内,列出列联表,再根据列联表中的数据,代入公式K2,计算出k值,然后代入离散系数表,比较即可得到答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=2015cos(ωx+φ)(ω>0,0<φ<π),满足f(-x)=-f(x),其图象与直线y=0的某两个交点的横坐标分别为x1,x2,|x1-x2|的最小值为π,则(  )
A、ω=2,φ=
π
4
B、ω=2,φ=
π
2
C、ω=1,φ=
π
4
D、ω=1,φ=
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={1,2,3,4,5,6,7,8,9},集合A={x|x2-4x+3=0},B={x|x=3a,a∈A},则集合∁M(A∪B)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={0,1},集合B={0,-1},则A∪B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={a1,a2,a3,a4},集合A是集合U的恰有两个元素的子集,且满足下列三个条件:
①若a1∈A,则a2∈A;
②若a3∉A,则a2∉A;
③若a3∈A,则a4∉A.
则集合A=
 
.(用列举法表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数y=f(x)在区间[-b,-a]上为减函数,且在此区间上,y=f(x)最小值为2,则函数y=f(x)在区间[a,b]上是(  )
A、增函数且最大值为2
B、增函数且最小值为-2
C、减函数且最大值为-2
D、减函数且最小值为2

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:7lg2(
1
2
)lg
7
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC满足|
AB
|=3,|
AC
|=4,O是△ABC所在平面内一点,满足|
AO
|=|
BO
|=|
CO
|,且
AO
AB
+
1-λ
2
AC
(λ∈R),则cos∠BAC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在区间M=[a,b],(a<b),使得,{y|yf(x),x∈M}=M则称区间为M函数f(x)的一个“稳定区间”给出下列4个函数,①f(x)=ex②f(x)=x3③f(x)=cos
π
2
x
④f(x)=lnx+1其中存在稳定区间区间的函数有(  )
A、①②B、①③C、②③D、②④

查看答案和解析>>

同步练习册答案