精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,圆的参数方程为是参数)以原点为极点,轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为

1)求圆的普通方程和的直线直角坐标方程;

2)设直线轴交点分别是,点是圆上的动点,求的面积的最小值.

【答案】1;(2)4.

【解析】

1)移项平方可以消去参数,得到普通方程,极坐标方程利用转化公式可得直角坐标方程;

2)先求圆心到直线的距离,利用圆的对称性可得圆上一点到直线的距离最小值,从而可得面积的最小值.

1)由

消去参数,得

所以圆的普通方程为.

,化成直角坐标为

所以直线直角坐标方程为.

2)由(1)知

圆心到直线的距离为

所以点到直线的距离的最小值为

所以的面积的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点轴的正半轴为极轴建立极坐标系已知曲线的极坐标方程为直线的参数方程为为参数),点的极坐标为设直线与曲线相交于两点

1写出曲线的直角坐标方程和直线的普通方程;

2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有学、习、强、国四个字,有放回地从中任取一张卡片,将三次抽取后“学”“习”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率,利用电脑随机产生整数0123四个随机数,分别代表学、习、强、国这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

210

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象上所有点的纵坐标不变,横坐标变为原来的,再将所得图象向右平移个单位,若得到的图象关于原点对称,则当时,的值域为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,左右焦点分别为,,离心率为,右焦点到右顶点的距离为1.

(1)求椭圆的方程;

(2)过 的直线与椭圆交于不同的两点,,则的面积是否存在最大值?若存在,求出这个最大值及直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的棱长均为2OAC的中点,平面A'OB平面ABC,平面平面ABC.

1)求证:A'O⊥平面ABC

2)求二面角ABCC'的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家统计局服务业调查中心和中国物流与采购联合会发布的201810月份至20199月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是(

A.12个月的PMI值不低于50%的频率为

B.12个月的PMI值的平均值低于50%

C.12个月的PMI值的众数为49.4%

D.12个月的PMI值的中位数为50.3%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】角中,角ABC的对边分别是abc,若

1)求角A

2)若的面积为,求的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当

①求函数在点处的切线方程;

②比较的大小;

2)当时,若对时,,且有唯一零点,证明:

查看答案和解析>>

同步练习册答案