精英家教网 > 高中数学 > 题目详情
在△ABC中,若sinA+sinB=sinC(cosA+cosB).
(1)判断△ABC的形状;
(2)在上述△ABC中,若角C的对边c=1,求该三角形内切圆半径的取值范围.
分析:(1)已知等式利用正弦定理化简得到关系式c(cosA+cosB)=a+b,再利用三角形射影定理得到a=b•cosC+c•cosB,b=c•cosA+a•cosC,表示出a+b,联立两式求出cosC的值为0,确定出C的度数为90°,即可对于三角形ABC形状为直角三角形;
(2)由c及sinC的值,利用正弦定理求出外接圆的半径R,表示出a与b,根据内切圆半径r=
1
2
(a+b-c),将a与b代入并利用两角和与差的正弦函数公式化简,根据正弦 函数的值域即可确定出r的范围.
解答:解:(1)根据正弦定理,原式可变形为:c(cosA+cosB)=a+b①,
∵根据任意三角形射影定理得:a=b•cosC+c•cosB,b=c•cosA+a•cosC,
∴a+b=c(cosA+cosB)+cosC(a+b)②,
由于a+b≠0,故由①式、②式得:cosC=0,
∴在△ABC中,∠C=90°,
则△ABC为直角三角形;
(2)∵c=1,sinC=1,∴由正弦定理得:外接圆半径R=
c
2sinC
=
1
2

a
sinA
=
b
sinB
=
c
sinC
=2R=1,即a=sinA,b=sinB,
∵sin(A+
π
4
)≤1,
∴内切圆半径r=
1
2
(a+b-c)=
1
2
(sinA+sinB-1)=
1
2
(sinA+sinB)-
1
2
=
2
2
sin(A+
π
4
)-
1
2
2
-1
2

∴内切圆半径的取值范围是(0,
2
-1
2
).
点评:此题考查了正弦、余弦定理,以及正弦函数的定义域与值域,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,若sinA:sinB:sinC=5:7:8,则此三角形的最大角与最小角之和为(  )
A、90°B、120°C、135°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

2、在△ABC中,若sinA•sinB<cosAcosB,则△ABC一定为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东至县模拟)在△ABC中,若sinA=
5
13
,cosB=
3
5
,则cosC的值是
-
16
65
-
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sinA:sinB:sinC=3:4:5,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法中,不正确的是(  )

查看答案和解析>>

同步练习册答案