【题目】如图,已知为等边三角形,为等腰直角三角形,.平面平面ABD,点E与点D在平面ABC的同侧,且,.点F为AD中点,连接EF.
(1)求证:平面ABC;
(2)求证:平面平面ABD.
科目:高中数学 来源: 题型:
【题目】如图,点在正方体的棱上(不含端点),给出下列五个命题:
①过点有且只有一条直线与直线,都是异面直线;
②过点有且只有一条直线与直线,都相交;
③过点有且只有一条直线与直线,都垂直;
④过点有无数个平面与直线,都相交;
⑤过点有无数个平面与直线,都平行;
其中真命题是____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高三学生为了迎接高考,要经常进行模拟考试,锻炼应试能力,某学生从升入高三到高考要参加次模拟考试,下面是高三第一学期某学生参加次模拟考试的数学成绩表:
模拟考试第次 | |||||
考试成绩分 |
(1)已知该考生的模拟考试成绩与模拟考试的次数满足回归直线方程,若高考看作第次模拟考试,试估计该考生的高考数学成绩;
(2)把次模拟考试的成绩单放在五个相同的信封中,从中随机抽取个信封研究成绩,求抽取的个信封中恰有个成绩不等于平均值的概率.
参考公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,准线方程为,直线过定点()且与抛物线交于、两点,为坐标原点.
(1)求抛物线的方程;
(2)是否为定值,若是,求出这个定值;若不是,请说明理由;
(3)当时,设,记,求的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市对各老旧小区环境整治效果进行满意度测评,共有10000人参加这次测评(满分100分,得分全为整数).为了解本次测评分数情况,从中随机抽取了部分人的测评分数进行统计,整理见下表:
组别 | 分组 | 频数 | 频率 |
1 | 3 | 0.06 | |
2 | 15 | 0.3 | |
3 | 21 | ||
4 | 3 | 0.12 | |
5 | 0.1 | ||
合计 | 1.00 |
(1)求出表中,,的值;
(2)若分数在80(含80分)以上表示对该项目“非常满意”,其中分数在90(含90分)以上表示“十分满意”,现从被抽取的“非常满意“人群中随机抽取2人,求至少有一人分数是“十分满意”的概率;
(3)请你根据样本数据估计全市的平均测评分数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com