精英家教网 > 高中数学 > 题目详情
11.设x,y满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$
(1)求目标函数z=3x-y的最大值;
(2)若目标函数z=ax+by(a>0,b>0)的最大值为6,求$\frac{1}{a}+\frac{4}{b}$的最小值.

分析 (1)作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.
(2)目标函数z=ax+by(a>0,b>0)的最大值为6,推出ab的关系,然后利用基本不等式求$\frac{1}{a}+\frac{4}{b}$的最小值.

解答 解:(1)x,y满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$的可行域如图:
当目标函数z=3x-y经过可行域的A时,取得最大值,
由$\left\{\begin{array}{l}{8x-y-4=0}\\{y=0}\end{array}\right.$可得A($\frac{1}{2}$,0),
目标函数z=3x-y的最大值为:$\frac{3}{2}$;
(2)目标函数z=ax+by(a>0,b>0)的最大值为6,
可知目标函数经过可行域的B时,取得最大值,
$\left\{\begin{array}{l}{2x-y+2=0}\\{8x-y-4=0}\end{array}\right.$可得B(1,4),
此时a+4b=6,
即1=$\frac{a}{6}+\frac{2b}{3}$,
$\frac{1}{a}+\frac{4}{b}$=($\frac{1}{a}+\frac{4}{b}$)($\frac{a}{6}+\frac{2b}{3}$)=$\frac{1}{6}$+$\frac{8}{3}$+$\frac{2a}{3b}+\frac{2b}{3a}$≥$\frac{17}{6}+2\sqrt{\frac{2a}{3b}×\frac{2b}{3a}}$=$\frac{17}{6}+\frac{8}{6}$=$\frac{25}{6}$.
当且仅当:a=b,a+4b=6时取等号.

点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.考查基本不变的是的应用,转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列四个函数中在(0,+∞)上为增函数的是(  )
A.f(x)=3-xB.f(x)=(x-1)2C.f(x)=$\frac{1}{x}$D.f(x)=x2+2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+bx-alnx.
(1)当a>0时,函数f(x)是否存在极值?判断并证明你的结论;
(2)若x=2是函数f(x)的极值点,1和x0是函数f(x)的两个不同零点,且x0∈(n,n+1),求自然数n的值;
(3)若对任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow a=(cosα,2sinα),\overrightarrow b=(2cosβ,-sinβ)$,$α、β∈[0,\frac{π}{2}]$.
(1)若$\overrightarrow a•\overrightarrow b=-\frac{10}{13}$,$sinβ=\frac{4}{5}$,求sin(α+2β)的值;
(2)若$\overrightarrow c=(0,1)$,求$|{\overrightarrow a-\overrightarrow c}|$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}满足条件$\frac{1}{3}{a_1}+\frac{1}{3^2}{a_2}+\frac{1}{3^3}{a_3}+…+\frac{1}{3^n}{a_n}=3n+1$,则数列{an}的通项公式为(  )
A.${a_n}={3^n}$B.${a_n}={3^{n+1}}$
C.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^n},n≥2\end{array}\right.$D.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^{n+1}},n≥2\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线x+$\sqrt{3}$y+k=0的倾斜角是(  )
A.$\frac{5}{6}$πB.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow m=(sinx,-1)$,向量$\overrightarrow n=(\sqrt{3}cosx,-\frac{1}{2})$,函数$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(Ⅰ)求f(x)单调递减区间;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,$a=2\sqrt{3}$,c=4,且f(A)恰是f(x)在$[{0,\frac{π}{2}}]$上的最大值,求A,b,和△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,a,b,c分别为内角A,B,C的对边,三边a,b,c成等差数列,且$B=\frac{π}{6}$,则(cosA-cosC)2的值为(  )
A.$1+\sqrt{3}$B.$\sqrt{2}$C.$2+\sqrt{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=2相切,则以a,b,c为三边长的三角形(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不存在

查看答案和解析>>

同步练习册答案