精英家教网 > 高中数学 > 题目详情
已知直线l:y=kx+b和曲线y=x3-3x+1相切,则斜率k最小时直线l的方程为
 
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:求出原函数的导函数,得到导函数的最小值,求出此时x的值,再求出此时的函数值,由直线方程的点斜式求得斜率k最小时直线l的方程.
解答: 解:由y=x3-3x+1,得y′=3x2-3,则y′=3(x2-1)≥-3,
当y′=-3时,x=0,
此时f(0)=1,
∴斜率k最小时直线l的方程为y-1=-3(x-0),即3x+y-1=0.
故答案为:3x+y-1=0.
点评:本题考查了利用导数研究过曲线上某点处的切线方程,过曲线上某点的切线的斜率,就是函数在该点处的导数值,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科做)如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E,F分别在BC,AD上,EF∥AB现将四边形ABEF沿EF折起,使得平面ABEF⊥平面EFDC.
(1)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.
(2)当BE=1,是否在折叠后的AD上存在一点P,使得CP∥平面ABEF?若存在,求出AP的长,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,AB=AC=3,BC=2,∠ABC的平分线交BC的平行线于点D,则△ABD的面积为(  )
A、3
2
B、
9
2
C、3
3
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

在△OAB中,已知P为线段AB上一点,
OP
=x
OA
+y
OB
BP
PA
(λ为实数),OA=4,OB=2,∠AOB=60°
(1)当λ=1时,求x,y的值;
(2)当λ=3时,求
OP
AB
的值;
(3)当2≤λ≤3时,求
OP
AB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=2n-1,n=1,2,3,…,那么数列{an}(  )
A、是等差数列但不是等比数列
B、是等比数列但不是等差数列
C、既是等差数列又是等比数列
D、既不是等差数列也不是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
sinx,x∈[0,2]
1
2
f(x-2),x∈(2,+∞)
有下列说法:
①函数f(x)对任意x1,x2∈[0,+∞),都有|f(x1)-f(x2)|≤2成立
②函数f(x)在[
1
2
(4n-3),
1
2
(4n-1)](n∈N•)上单调递减;
③函数y=f(x)-log2x+1在(0,+∞)上有3个零点;
④当k∈[
8
7
,+∞)时,对任意x>0,不等式f(x)≤
k
x
都成立.
其中正确的说法的个数是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin( α+
π
6
)=
1
3
,且α∈(0,π),则tanα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某地计划建设一个外墙侧面面积为1500m2的仓储,现有两种方案,一是仓储外墙设计正四棱锥的侧面(如图a),四个侧面均为底边长为30m的等腰三角形;二是仓储外墙设计为面半径为20m的圆锥的侧面(如图b),请问选用哪一种方案能使仓储的空间更大一些,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,若
cosA
a
=
cosB
b
=
cosC
c
,试判断△ABC的形状.

查看答案和解析>>

同步练习册答案