精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=4sinxcos(x+)+1.

(1)求f()的值;

(2)求f(x)的最小正周期;

(3)求f(x)在区间[0,]上的最大值和最小值.

【答案】(1); (2); (3)最小值为-1,最大值为2.

【解析】

(1)根据两角和的余弦公式、二倍角公式及辅助角公式将fx)化简为fx)=2sin(2x),即可计算;

(2)根据周期公式求解即可;

(3)由x[0,]上,求解内层函数的范围,结合三角函数的性质可得最值.

函数f(x)=4sinx(cosxcos-sinxsin)+1,

=2sinxcosx-2sin2x+1,

=sin2x+cos2x,

=2sin(2x+),

(1)f()=2sin(+)=2sin=

(2)周期T=

(3)由x在[0,]上,

∴2x+∈[],

当2x+=,即x=,f(x)取得最小值为-1;

当2x+=,即x=,f(x)取得最大值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆 =1(a>b>0)的左焦点为F,过点F的直线交椭圆于A,B两点.|AF|的最大值是M,|BF|的最小值是m,满足Mm= a2

(1)求该椭圆的离心率;
(2)设线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点.记△GFD的面积为S1 , △OED的面积为S2 , 求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,

(1)求证:EF⊥平面ACFD;
(2)求二面角B﹣AD﹣F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆离心率为是椭圆的左、右焦点,以为圆心,为半径的圆和以为圆心、为半径的圆的交点在椭圆上.

(1)求椭圆的方程;

(2)设椭圆的下顶点为,直线与椭圆交于两个不同的点,是否存在实数使得以为邻边的平行四边形为菱形?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2)ex+a(x﹣1)2
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=(  )

A.7
B.12
C.17
D.34

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过点P(3,2),且在两坐标轴上的截距相等的直线方程为(写出一般式)___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系内从点P1(0,0)作x轴的垂线交曲线y=ex于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2.再从P2x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1Q1P2Q2;…;PnQn,记点的坐标为(,0)(k=1,2,…,n).

(1)试求的关系(k=2,…,n);

(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|PnQn|.

查看答案和解析>>

同步练习册答案