精英家教网 > 高中数学 > 题目详情

如图,四面体ABCD中,△ABD和△BCD均为等边三角形,BD=2,O是BD的中点,且AO⊥平面BCD.
(1)求二面角A-BC-D的大小(结果用反三角函数表示);
(2)求点O到平面ACD的距离.

解:(1)因为△ABD和△BCD都是等边三角形,O是BD中点,所以AO⊥BD,CO⊥BD,以O为原点,OB、OC、OA所在直线分别为x轴、y轴、z轴,建立空间直角坐标系.…(1分)
则O(0,0,0),,B(1,0,0),,D(-1,0,0),…(2分)
因为AO⊥平面BCD,所以平面BCD的一个法向量为,…(3分)
设平面ABC的一个法向量为
,所以
,令z=1,得,y=1,所以,…(5分)
的夹角为θ,则,…(6分)
由图形可知,二面角A-BC-D为锐角,
所以二面角A-BC-D的大小为.…(7分)
(2)设平面ACD的一个法向量为,则
,…(8分)
所以,由,得,令,则v=1,w=1,
,…(10分)
因为,…(12分)
所以点O到平面ACD的距离为.…(14分)
分析:(1)以O为原点,OB、OC、OA所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,分别求出平面BCD,面ABC的一个法向量,利用两个发向量夹角求解.
(2)求出平面ACD的一个法向量,点O到平面ACD的距离 为方向上投影的绝对值.
点评:本题考查二面角、空间距离大小计算.考查空间想象能力、逻辑思维能力和运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,
AB=2,AC=
6

(I)求证:AO⊥平面BCD;
(II)求二面角A-BC-D的大小;
(III)求O点到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,O.E分别为BD.BC的中点,且CA=CB=CD=BD=2,AB=AD=
2

(1)求证:AO⊥平面BCD;
(2)求 异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD中,0是BD的中点,CA=CB=CD=BD=a,AB=AD=
2
2
a

(1)求证:平面AOC⊥平面BCD;
(2)求二面角O-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四面体ABCD的各个面都是直角三角形,已知AB⊥BC,BC⊥CD,AB=a,BC=a,CD=c.
(1)若AC⊥CD,求证:AB⊥BD;
(2)求四面体ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四面体ABCD中,O、E分别是BD、BC的中点,AO⊥平面BCD,CA=CB=CD=BD=2.
(1)求证:面ABD⊥面AOC;
(2)求异面直线AE与CD所成角的大小.

查看答案和解析>>

同步练习册答案