精英家教网 > 高中数学 > 题目详情
已知△ABC的顶点B,C在椭圆
x2
3
+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是(  )
A.2
3
B.6C.4
3
D.12
由椭圆的定义椭圆上一点到两焦点的距离之和等于长轴长2a,
可得△ABC的周长为4a=4
3

所以选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的长、短轴端点分别为A、B,从椭圆上一点M(在x轴上方)向x轴作垂线,恰好通过椭圆的左焦点F1
AB
OM

(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点,F1、F2分别是左、右焦点,求∠F1QF2的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若
AP
=2
PB

|AP|=2|PB|,则椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆
x2
a2
+
y2
b2
=1
(a>0,b>0)的两焦点关于直线y=x的对称点均在椭圆内部,则椭圆的离心率e的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,面ABC⊥α,D为AB的中点,|AB|=2,∠CDB=60°,P为α内的动点,且P到直线CD的距离为
3
,则∠APB的最大值为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2为椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两个焦点,过F2作椭圆的弦AB,若△AF1B的周长为16,椭圆的离心率e=
3
2
,则椭圆的方程为(  )
A.
x2
4
+
y2
3
=1
B.
x2
16
+
y2
3
=1
C.
x2
16
+
y2
4
=1
D.
x2
16
+
y2
12
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定点N(1,0),动点A、B分别在图中抛物线y2=4x及椭圆
x2
4
+
y2
3
=1
的实线部分上运动,且ABx轴,则△NAB的周长l取值范围是(  )
A.(
2
3
,2
B.(
10
3
,4
C.(
51
16
,4
D.(2,4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆C:
x2
4
+y2=1
的两个焦点,P为椭圆C在第一象限上的一点,且
PF1
PF2
.则P到x=
5
3
3
的距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以抛物线的焦点为顶点,顶点为中心,离心率为2的双曲线方程是         .

查看答案和解析>>

同步练习册答案