精英家教网 > 高中数学 > 题目详情

【题目】如图,某小区拟在空地上建一个占地面积为2400平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.

【答案】当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米.

【解析】

试题先将休闲广场的长度设为米,并将宽度也用进行表示,并将绿化区域的面积表示成的函数表达式,利用基本不等式来求出绿化区域面积的最大值,但是要注意基本不等式适用的三个条件.

试题解析:设休闲广场的长为米,则宽为米,绿化区域的总面积为平方米,

6

8

因为,所以

当且仅当,即时取等号 12

此时取得最大值,最大值为.

答:当休闲广场的长为米,宽为米时,绿化区域总面积最大值,最大面积为平方米.

14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为实数,函数.

I)若,求实数的取值范围;

II)当时,讨论方程上的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin.

(1)求A;

(2)若△ABC的面积S=c2,求sin C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点是.问:是否存在内接等腰直角三角形,该三角形的一条直角边过点?如果存在,存在几个?如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某辆汽车以千米小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求时,每小时的油耗(所需要的汽油量)为升,其中为常数,且

1)若汽车以120千米小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求的取值范围;

2)求该汽车行驶100千米的油耗的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左、右顶点分别为AB,离心率为,点P1)为椭圆上一点.

1)求椭圆C的标准方程;

2)如图,过点C01)且斜率大于1的直线l与椭圆交于MN两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1=2k2,求直线l斜率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,()的部分图像如图所示.

1)求函数的解析式及图像的对称轴方程;

2)把函数图像上点的横坐标扩大到原来的2倍(纵坐标不变),再向左平移个单位,得到函数的图象,求关于x的方程时所有的实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,已知曲线的参数方程为 为参数以原点为极点x轴正半轴为极轴建立极坐标系,直线的极坐标方程为:,直线的极坐标方程为

Ⅰ)写出曲线的极坐标方程,并指出它是何种曲线;

Ⅱ)设与曲线交于两点,与曲线交于两点,求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中不可或缺的一部分.某市一调查机构针对该市市场占有率最高的甲、乙两家网络外卖企业(以下简称外卖甲,外卖乙)的经营情况进行了调查,调查结果如表:

1日

2日

3日

4日

5日

外卖甲日接单(百单)

5

2

9

8

11

外卖乙日接单(百单)

2.2

2.3

10

5

15

(1)据统计表明,之间具有线性相关关系.

(ⅰ)请用相关系数加以说明:(若,则可认为有较强的线性相关关系(值精确到0.001))

(ⅱ)经计算求得之间的回归方程为.假定每单外卖业务企业平均能获纯利润3元,试预测当外卖乙日接单量不低于2500单时,外卖甲所获取的日纯利润的大致范围:(值精确到0.01)

(2)试根据表格中这五天的日接单量情况,从平均值和方差角度说明这两家外卖企业的经营状况.

相关公式:相关系数

参考数据:

.

查看答案和解析>>

同步练习册答案