精英家教网 > 高中数学 > 题目详情
用更相减损术求30和18的最大公约数时,第三次作的减法为(  )
A、18-16=6
B、12-6=6
C、6-6=0
D、30-18=12
考点:辗转相除法
专题:计算题
分析:根据更相减损术:用较大的数字减去较小的数字,得到差,仍用差和减数中较大的数字减去较小的数字,这样依次做下去,等做到减数和差相等时,即可得到答案.
解答: 解:由题意得,30-18=12,
18-12=6,
12-6=6,
6-6=0,
所以第三次作的减法为:12-6=6,
故选:B.
点评:本题考查更相减损术,熟练掌握更相减损术求最大公约数的方法和步骤是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥E-ABCD中,AB∥CD,CD=2AB,
(Ⅰ)在线段CE上找一点M,使得BM∥平面ADE,并给予证明.
(Ⅱ)若平面ADE∩平面BCE=l,试证明:l∥BM.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,点M是BC的中点,角A=120°,
AB
AC
=-2,则|
AM
|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若
a
b
=0,则
a
b

②|
a
+
b
|>|
a
-
b
|
③设
e1
e2
不共线,
e1
+2
e2
e2
+2
e1
能作为一组基底
④若存在一个实数k满足
a
=k
b
,则
a
b
共线
其中正确命题的个数是(  )                                  (第5题)
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x-k2+k+2(k∈z)满足f(2)<f(3).
①求k及f(x);
②判断是否存在q>0使g(x)=1-qf(x)+(2q-1)x在[-1,2]上的值域为[-4,
17
8
],若存在求出q;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同的方法抽取样本时,总体中每个个体被抽中的概率分别为P1,P2,P3,则(  )
A、P1=P2=P3
B、P1=P2<P3
C、P2=P3<P1
D、P1=P3<P2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=lg
1+x
1-x
的定义域为集合A,集合B=(a,a+1),若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若三棱锥从一个顶点出发的三条棱两两垂直,且长度分别为1,2,3则该三棱锥的外接球的半径为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(3,0)和点N(-3,0),直线PM,PN的斜率乘积为常数a(a≠0),设点P的轨迹为C,给出以下几个命题:
①存在非零常数a,使C上所有点到两点(-4,0),(4,0)距离之和为定值;
②存在非零常数a,使C上所有点到两点(0,-4),(0,4)距离之和为定值;
③不存在非零常数a,使C上所有点到两点(-4,0),(4,0)距离差的绝对值为定值;
④不存在非零常数a,使C上所有点到两点(0,-4),(0,4)距离差的绝对值为定值;
其中正确的命题是
 
.(填出所有正确命题的序号)

查看答案和解析>>

同步练习册答案