精英家教网 > 高中数学 > 题目详情
15.向边长为a的正三角形内任投一点,点落在三角形内切圆内的概率是$\frac{\sqrt{3}π}{9}$.

分析 求出正三角形的面积与其内切圆的面积,即可求出对应的概率.

解答 解:∵正三角形边长为a,
∴该正三角形的面积S正三角形=$\frac{\sqrt{3}}{4}$a2
其内切圆半径为r=$\frac{1}{3}$×$\frac{\sqrt{3}}{2}$a=$\frac{\sqrt{3}}{6}$a,
内切圆面积为S内切圆=πr2=$\frac{π}{12}$a2
∴点落在圆内的概率为
P=$\frac{{S}_{内切圆}}{{S}_{正三角形}}$=$\frac{{\frac{π}{12}a}^{2}}{{\frac{\sqrt{3}}{4}a}^{2}}$=$\frac{\sqrt{3}π}{9}$.
故答案为:$\frac{\sqrt{3}π}{9}$.

点评 本题考查了几何概型的计算问题,解题的关键是弄清几何测度思维什么,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是空间两个不共线的向量,已知$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$,$\overrightarrow{BC}$=5$\overrightarrow{{e}_{1}}$+4$\overrightarrow{{e}_{2}}$,$\overrightarrow{DC}$=-$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,且A,B,D三点共线,则实数k=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,F1F2为椭圆C:$\frac{{x}^{2}}{4}$$+\frac{{y}^{2}}{3}$=1的左、右焦点,点P为椭圆C上一点,延长PF1、,PF2分别交椭圆C于A,B.若$\overrightarrow{P{F}_{1}}$=2$\overrightarrow{{F}_{1}A}$,$\overrightarrow{P{F}_{2}}$=$λ\overrightarrow{{F}_{2}B}$,则λ=(  )
A.1B.$\sqrt{2}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,直线l经过第二、第三、第四象限,l的倾斜角为α,斜率为k,则(  )
A.ksin(π+α)>0B.kcos(π-α)>0C.ksinα≤0D.kcosα≤0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)在[-2,2]上是奇函数,在区间[0,2]上是减函数,且f(a-1)<f(2-a),则a的取值范围是$\frac{3}{2}$<a≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知四棱锥S-ABCD,底面ABCD为菱形,SA⊥平面ABCD,∠ADC=60°,E,F分别是SC,BC的中点.
(Ⅰ)证明:SD⊥AF;
(Ⅱ)若AB=2,SA=4,求二面角F-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l:y=x+$\sqrt{6}$,圆O:x2+y2=4,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)已知动直线l1(斜率存在)与椭圆E交于P,Q两个不同点,且△OPQ的面积S△OPQ=1,若N为线段PQ的中点,问:在x轴上是否存在两个定点A,B,使得直线NA与NB的斜率之积为定值?若存在,求出A,B的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.中心在坐标原点O,焦点在坐标轴上的椭圆E经过两点$R({-\frac{{\sqrt{3}}}{2},-\frac{{\sqrt{6}}}{2}}),Q({\frac{3}{2},\frac{{\sqrt{2}}}{2}})$.分别过椭圆E的焦点F1、F2的动直线l1,l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率k1、k2、k3、k4满足k1+k2=k3+k4
(1)求椭圆E的方程;
(2)是否存在定点M、N,使得|PM|+|PN|为定值.若存在,求出M、N点坐标并求出此定值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则∁U(A∪B)=(  )
A.{5}B.{2}C.{1,2,3,4}D.{1,3,4,5}

查看答案和解析>>

同步练习册答案