精英家教网 > 高中数学 > 题目详情

【题目】某学校上学期的期中考试后,为了了解某学科的考试成绩,根据学生的考试成绩利用分层抽样抽取名学生的成绩进行统计(所有学生成绩均不低于分),得到学生成绩的频率分布直方图如图,回答下列问题;

(Ⅰ)根据频率分布直方图计算本次考试成绩的平均分;

(Ⅱ)已知本次全校考试成绩在内的人数为,试确定全校的总人数;

(Ⅲ)若本次考试抽查的人中考试成绩在内的有名女生,其余为男生,从中选择两名学生,求选择一名男生与一名女生的概率.

【答案】(1)75(2)1050(3)

【解析】试题分析】(1)借助频率分布直方图上面的数据运用加权平均数公式求解;(2)运用频率和频数之间的关系求解;(3)运用列举法和古典概型的计算公式求解:

(Ⅰ)根据频率分布直方图可知,本次考试成绩的平均分为

(分).

(Ⅱ)本次全校考试成绩在分以下的频率为,所以全校的总人数为.

(Ⅲ)根据频率分布直方图可知,考试成绩在内的学生人数为,则有名男生.

设男生分别为,女生分别为,所有情况有

,共15种,

其中一名男生与一名女生的情况有 ,共8种,故所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点, 轴的正半轴为极轴建立极坐标系.若直线的极坐标方程为,曲线的极坐标方程为,将曲线上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)已知直线与曲线交于两点,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各式:
(1)已知loga <1,则a>
(2)函数y=2x的图象与函数y=2x的图象关于y轴对称;
(3)函数f(x)=lg(mx2+mx+1)的定义域是R,则m的取值范围是0≤m<4;
(4)函数y=ln(﹣x2+x)的递增区间为(﹣∞, ]
正确的有 . (把你认为正确的序号全部写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂每日生产一种大型产品1件,每件产品的投入成本为2000元.产品质量为一等品的概率为,二等品的概率为,每件一等品的出厂价为10000元,每件二等品的出厂价为8000元.若产品质量不能达到一等品或二等品,除成本不能收回外,没生产一件产品还会带来1000元的损失.

(1)求在连续生产3天中,恰有一天生产的两件产品都为一等品的的概率;

(2)已知该厂某日生产的2件产品中有一件为一等品,求另一件也为一等品的概率;

(3)求该厂每日生产该种产品所获得的利润(元)的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求实数k的值;
(2)设g(x)=log4(a2x+a),若f(x)=g(x)有且只有一个实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某大学联盟的自主招生考试中,报考文史专业的考生参加了人文基础学科考试科目语文数学的考试.某考场考生的两科考试成绩数据统计如下图所示,本次考试中成绩在内的记为,其中语文科目成绩在内的考生有10人.

1)求该考场考生数学科目成绩为的人数;

2)已知参加本考场测试的考生中,恰有2人的两科成绩均为.在至少一科成绩为的考生中,随机抽取2人进行访谈,求这2人的两科成绩均为的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx+c(a≠0),记f[2](x)=f(f(x)),例:f(x)=x2+1,
则f[2](x)=(f(x))2+1=(x2+1)2+1;
(1)f(x)=x2﹣x,解关于x的方程f[2](x)=x;
(2)记△=(b﹣1)2﹣4ac,若f[2](x)=x有四个不相等的实数根,求△的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市100户居民的月平均用电量(单位:),[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.

(1)求直方图中x的值;

(2)求月平均用电量的众数和中位数;

(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a=log36,a=log510,a=log714,则(
A.a>b>c
B.a>c>b
C.c>a>b
D.c>b>a

查看答案和解析>>

同步练习册答案