【题目】已知椭圆的上顶点为,右焦点为,直线与圆相切.
(1)求椭圆的方程;
(2)若不过点的动直线与椭圆交于两点,且,试探究:直线是否过定点,若是,求该定点的坐标,若不是,请说明.
【答案】(1);(2)直线过定点.
【解析】
(1)由题意知直线的方程为, 由直线与圆相切,得进而求解方程。
(2)证法一:由知,设直线的方程为,直线的方程为.联立,整理得,求解点,点,进而表示出直线方程求解。
(1)圆的圆心为,半径
由题意知,,
直线的方程为,即,
由直线与圆相切,得,
解得,,
故椭圆的方程为.
(2)证法一:由知,从而直线与坐标轴不垂直,故可设直线的方程为,直线的方程为.
联立,整理得,
解得或,故点的坐标为,
同理,点的坐标为,
∴直线的斜率为,
∴直线的方程为,
即.
所以直线过定点.
证法二:由,知,从而直线与轴不垂直,故可设直线的方程为,
联立,整理得.
设,,则,,(*)
由得.
由,
得,
将(*)代入,得,
所以直线过定点.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系x-O-y中,已知曲线E:(t为参数)
(1)在极坐标系O-x中,若A、B、C为E上按逆时针排列的三个点,△ABC为正三角形,其中A点的极角θ=,求B、C两点的极坐标;
(2)在直角坐标系x-O-y中,已知动点P,Q都在曲线E上,对应参数分别为t=α与t=2α (0<α<2π),M为PQ的中点,求 |MO| 的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学作为蓝色海洋教育特色学校,随机抽取100名学生,进行一次海洋知识测试,按测试成绩(假设考试成绩均在[65,90)内)分组如下:第一组[65,70),第二组 [70,75),第三组[75,80),第四组 [80,85),第五组 [85,90).得到频率分布直方图如图C34.
(1)求测试成绩在[80,85)内的频率;
(2)从第三、四、五组学生中用分层抽样的方法抽取6名学生组成海洋知识宣讲小组,定期在校内进行义务宣讲,并在这6名学生中随机选取2名参加市组织的蓝色海洋教育义务宣讲队,求第四组至少有1名学生被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了弘扬传统文化,某市举办了“高中生诗词大赛”,现从全市参加比赛的学生中随机抽取人的成绩进行统计,得到如图所示的频率分布直方图,其中成绩的分组区间为,,,.
(1)求频率分布直方图中的值;
(2)在所抽取的名学生中,用分层抽样的方法在成绩为的学生中抽取了一个容量为的样本,再从该样本中任意抽取人,求人的成绩均在区间内的概率;
(3)若该市有名高中生参赛,根据此次统计结果,试估算成绩在区间内的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100,水温与时间近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度与时间近似满足函数的关系式为 (为常数), 通常这种热饮在40时,口感最佳,某天室温为时,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为
A. 35 B. 30
C. 25 D. 20
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com