精英家教网 > 高中数学 > 题目详情
已知在△ABC中,角A,B,C的对边为a,b,c且8(sin
B+C
2
)2-2cos2A=7

求:(1)角A的大小;
(2)若a=
3
,b+c=3
求△ABC的面积.
分析:(1)由三角形的内角和定理得到
B+C
2
=
π
2
-
A
2
,利用诱导公式化简已知的等式,再根据二倍角的余弦函数公式化简,得到关于cosA的方程,求出方程的解得到cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数;
(2)利用余弦定理得到a2=b2+c2-2bccosA,利用完全平方公式变形后,把a,b+c及cosA的值代入求出bc的值,再由bc的值及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.
解答:解:(1)∵8(sin
B+C
2
)2-2cos2A=7
,且A+B+C=π,
8(cos
A
2
)2-2cos2A=7

∴4(cosA+1)-2(2cos2A-1)=7,
cosA=
1
2
,又A为三角形的内角,
A=
π
3
;-----(7分)
(2)∵a=
3
,b+c=3
,且a2=b2+c2-2bccosA=(b+c)2-3bc,
∴bc=2,又sinA=
3
2

△ABC的面积=
1
2
bcsinA
=
3
2
.--------(14分)
点评:此题属于解三角形的题型,涉及的知识有:诱导公式,二倍角的余弦函数公式,余弦定理,三角形的面积公式,以及特殊角的三角函数值,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•吉安县模拟)已知在△ABC中,角A、B、C的对边长分别为a、b、c,已知向量
m
=(sinA+sinC,sinB-sinA),
n
=(sinA-sinC,sinB),且
m
n

(1)求角C的大小;
(2)若a2=b2+
1
2
c2
,试求sin(A-B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,
3
4
),
b
=(cos(x+
π
3
),1)函数f(x)=
a
b

(1)求f(x)的最值和单调递减区间;
(2)已知在△ABC中,角A、B、C的对边分别为a,b,c,f(A)=0,a=
3
,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C的对边分别为a,b,c,且角A,B,C成等差数列,若边a,b,c成等比数列,求sinA•sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在△ABC中,角A,B,C所对的边分别为a,b,c,其长度分别为3,4,5,则
AB
BC
+
BC
CA
=
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•泸州二模)已知在△ABC中,角A、B、C的对边分别是a、b、c,且tanB=
2-
3
a2+c2-b2
BC
BA
=
1
2

(Ⅰ)求tanB的值;
(Ⅱ)求
2sin2
B
2
+2sin
B
2
cos
B
2
-1
cos(
π
4
-B)
的值.

查看答案和解析>>

同步练习册答案