精英家教网 > 高中数学 > 题目详情
若函数f(x)满足:对于任意x1,x2>0,都有f(x1)>0,f(x2)>0且f(x1)+f(x2)<f(x1+x2)成立,则称函数f(x)具有性质M.给出下列四个函数:①y=x3,②y=log2(x+1),③y=2x-1,④y=sinx.其中具有性质M的函数是
 
(注:把满足题意所有函数的序号都填上)
分析:根据题意依次分析命题:①②③通过做差比较f(x1)+f(x2)-f(x1+x2)大于还是小于零,得出结论;④当x>0时,根据函数y=sinx的值域是[-1,1],得出结论即可.
解答:解:①函数y=x3,当x>0时,y>0
f(x1)+f(x2)-f(x1+x2)=x13+x23-(x1+x23=-3x12x2-3x22x1<0
∴f(x1)+f(x2)<f(x1+x2) 故①具有性质M的函数;
②当x1,x2>0时,y=log2(x+1)>0
f(x1)+f(x2)-f(x1+x2)=log2
(x1+1)(x2+1)  
x1+x2+1

∵x1,x2>0
∴f(x1)+f(x2)-f(x1+x2)=log2
(x1+1)(x2+1)  
x1+x2+1
>0
即f(x1)+f(x2)>f(x1+x2
故②不具有性质M的函数;
③当x>0时,y=2x-1的值域(0,+∞)
f(x1)+f(x2)-f(x1+x2)=2x1-1+2x2-1-2x1+x2+1>0 故③具有性质M的函数;
④当x>0时,函数y=sinx的值域是[-1,1],故不具有M的性质.
可通过作差比较得到结论.
故答案为①③.
点评:本题考查了对数函数、正弦函数、指数函数的单调性以及值域,对于比较两数大小一般采取做差比较的方法.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=sin(ωx+φ)(ω>0,|φ|<
π
2
)
在同一个周期内,当x=
π
4
时y取最大值1,当x=
12
时,y取最小值-1.
(1)求函数的解析式y=f(x).
(2)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象?
(3)若函数f(x)满足方程f(x)=a(0<a<1),求在[0,2π]内的所有实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sinxcosx-
3
2
cos2x,(x∈R)

(1)求函数f(x)的最小正周期;
(2)若函数f(x)满足f(x+m)=f(m-x),试求实数m的最小正值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足f(
1
x
)=-f(x)
,则称f(x)为倒负变换函数.下列函数:
y=x-
1
x
;②y=x+
1
x
;③f(x)=
-x, 0<x<1
0, x=1
x-1, x>1
中为倒负变换函数的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)满足f(x+3)=x,f-1(x)的定义域为[1,4],则f(x)的定义域为、(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•普陀区一模)若函数f(x)满足f(x+10)=2f(x+9),且f(0)=1,则f(10)=
210
210
_.

查看答案和解析>>

同步练习册答案