精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,为正三角形,为棱的中点,,平面平面

1)求证:平面平面

2)若是棱上一点,与平面所成角的正弦值为,求二面角的正弦值.

【答案】(1)证明见解析(2)

【解析】

1)先根据平面平面,得出,结合条件得出平面,从而可得.

2)建立空间直角坐标系,结合与平面所成角的正弦值为得出的坐标,然后利用法向量可求.

1)因为为正三角形,为棱的中点,所以

又平面平面,且平面平面

所以平面

所以,又,且

所以平面.

平面

所以平面平面.

2)作中点,连,由(1)及可知平面

为坐标原点,分别为轴,过且平行于的方向为轴,如图,建立空间直角坐标系.

,

,则,

设平面的法向量为

因为与平面所成角的正弦值为

所以,即,解得

的中点,则

设平面的法向量为,则

,即

.

设平面的法向量为,则

则二面角的余弦值为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为给定的不小于的正整数,考察个不同的正整数构成的集合,若集合的任何两个不同的非空子集所含元素的总和均不相等,则称集合差异集合

1)分别判断集合,集合是否是差异集合;(只需写出结论)

2)设集合差异集合,记,求证:数列的前项和

3)设集合差异集合,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第28届金鸡百花电影节将于11月19日至23日在福建省厦门市举办,近日首批影展片单揭晓,《南方车站的聚会》《春江水暖》《第一次的离别》《春潮》《抵达之谜》五部优秀作品将在电影节进行展映.若从这五部作品中随机选择两部放在展映的前两位,则《春潮》与《抵达之谜》至少有一部被选中的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(0,-2),椭圆E (a>b>0)的离心率为F是椭圆E的右焦点,直线AF的斜率为O为坐标原点.

(1)E的方程;

(2)设过点A的动直线lE相交于PQ两点.OPQ的面积最大时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,左、右焦点分别是,且椭圆上一动点的最远距离为,过的直线与椭圆交于两点.

1)求椭圆的标准方程;

2)当为直角时,求直线的方程;

3)直线的斜率存在且不为0时,试问轴上是否存在一点使得,若存在,求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年双十一落下帷幕,天猫交易额定格在268(单位:十亿元)人民币(下同),再创新高,比去年218(十亿元)多了50(十亿元),这些数字的背后,除了是消费者买买买的表现,更是购物车里中国新消费的奇迹,为了研究历年销售额的变化趋势,一机构统计了2010年到2019年天猫双十一的销售额数据(单位:十亿元).绘制如下表1

1

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

编号

1

2

3

4

5

6

7

8

9

10

销售额

0.9

8.7

22.4

41

65

94

132.5

172.5

218

268

根据以上数据绘制散点图,如图所示.

把销售超过100(十亿元)的年份叫畅销年,把销售额超过200(十亿元)的年份叫狂欢年,从2010年到2019年这十年的畅销年中任取2个,求至少取到一个狂欢年的概率.

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点均在抛物线上,给出下列命题:

①若直线过点,则存在使抛物线的焦点恰为的重心;

②若直线过点,则存在点使为直角三角形;

③存在,使抛物线的焦点恰为的外心;

④若边的中线轴,,则的面积为.

其中正确的序号为______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一年度未发生有责任道路交通事故

下浮10%

上两年度未发生有责任道路交通事故

下浮

上三年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任不涉及死亡的道路交通事故

上浮10%

上一个年度发生有责任交通死亡事故

上浮30%

某机构为了解某一品牌普通6座以下私家车的投保情况,随机抽取了辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

A1

A2

A3

A4

A5

A6

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C,(ab0)过点(1)且离心率为

1)求椭圆C的方程;

(2)设椭圆C的右顶点为P,过定点(2,﹣1)的直线lykx+m与椭圆C相交于异于点PAB两点,若直线PAPB的斜率分别为k1k2,求k1+k2的值.

查看答案和解析>>

同步练习册答案