精英家教网 > 高中数学 > 题目详情

【题目】已知是两条不同直线,是两个不同平面,给出下列四个命题:

①若垂直于同一平面,则平行;

②若平行于同一平面,则平行;

③若不平行,则在内不存在与平行的直线;

④若不平行,则不可能垂直于同一平面

其中真命题的个数为(  )

A.4B.3C.2D.1

【答案】D

【解析】

①若垂直于同一平面,则可能相交;②若平行于同一平面,则两直线位置不能确定;③若相交,则在内存在无数条与平行的直线;④用反证法证明结论成立.即可得出结论.

①若直线垂直平面,根据面面垂直的判断定理,

所有过直线的平面都与平面垂直,取其中的两个平面为

此时相交,故①不正确;

②若平行于同一平面,则两直线可能平行、相交、异面;

故②不正确;

③若不平行,则相交,则在内存在无数条直线与两平面的交线平行,

根据线面平面的判定定理,这无数条平行线与平面平行,故③不正确;

④假设同垂直平面,则有,与已知不平行矛盾,

故假设不成立,即不同垂直平面,故④正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)设椭圆与双曲线有相同的焦点是椭圆与双曲线的公共点,且△的周长为6,求椭圆的方程;我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为盾圆

2)如图,已知盾圆的方程为,设盾圆上的任意一点的距离为到直线的距离为,求证:为定值;

3)由抛物线弧)与第(1)小题椭圆弧)所合成的封闭曲线为盾圆,设过点的直线与盾圆交于两点,,且),试用表示,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形,四边形是梯形,,平面平面,且.

(Ⅰ)求证:∥平面

(Ⅱ)求二面角的大小;

(Ⅲ)已知点在棱上,且异面直线所成角的余弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性.

(2)试问是否存在,使得恒成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)a=1时,若曲线y=f(x)在点M (x0,f(x0))处的切线与曲线y=g(x)在点P (x0, g(x0))处的切线平行,求实数x0的值;

(II)(0,e],都有f(x)≥g(x)+,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生自主学习期间完成数学套卷的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.

1)从这班学生中任选一名男生,一名女生,求这两名学生完成套卷数之和为4的概率?

2)若从完成套卷数不少于4套的学生中任选4人,设选到的男学生人数为,求随机变量的分布列和数学期望;

3)试判断男学生完成套卷数的方差与女学生完成套卷数的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,已知函数与函数有交点,且交点横坐标之和不大于,求的取值范围_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1),求函数的所有零点;

(2),证明函数不存在极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为

1)求轨迹的方程;

2)求定点到轨迹上任意一点的距离的最小值;

3)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.

查看答案和解析>>

同步练习册答案