【题目】已知,是两条不同直线,,是两个不同平面,给出下列四个命题:
①若,垂直于同一平面,则与平行;
②若,平行于同一平面,则与平行;
③若,不平行,则在内不存在与平行的直线;
④若,不平行,则与不可能垂直于同一平面
其中真命题的个数为( )
A.4B.3C.2D.1
科目:高中数学 来源: 题型:
【题目】(1)设椭圆与双曲线有相同的焦点、,是椭圆与双曲线的公共点,且△的周长为6,求椭圆的方程;我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”;
(2)如图,已知“盾圆”的方程为,设“盾圆”上的任意一点到的距离为,到直线的距离为,求证:为定值;
(3)由抛物线弧()与第(1)小题椭圆弧()所合成的封闭曲线为“盾圆”,设过点的直线与“盾圆”交于、两点,,,且(),试用表示,并求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是正方形,四边形是梯形,∥,,平面平面,且.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)已知点在棱上,且异面直线与所成角的余弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(Ⅰ)当a=1时,若曲线y=f(x)在点M (x0,f(x0))处的切线与曲线y=g(x)在点P (x0, g(x0))处的切线平行,求实数x0的值;
(II)若(0,e],都有f(x)≥g(x)+,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生自主学习期间完成数学套卷的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.
(1)从这班学生中任选一名男生,一名女生,求这两名学生完成套卷数之和为4的概率?
(2)若从完成套卷数不少于4套的学生中任选4人,设选到的男学生人数为,求随机变量的分布列和数学期望;
(3)试判断男学生完成套卷数的方差与女学生完成套卷数的方差的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点到点的距离比它到轴的距离多1,记点的轨迹为;
(1)求轨迹的方程;
(2)求定点到轨迹上任意一点的距离的最小值;
(3)设斜率为的直线过定点,求直线与轨迹恰好有一个公共点,两个公共点,三个公共点时的相应取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com