精英家教网 > 高中数学 > 题目详情

已知(数学公式+数学公式n的展开式中,前三项系数成等差数列.
(1)求n;
(2)求第三项的二项式系数及项的系数;
(3)求含x项的系数.

解:(1)前三项系数为1,Cn1Cn2成等差数列,
∴2•Cn1=1+Cn2,即n2-9n+8=0,
∴n=8或n=1(舍);
(2)由n=8知:
其通项公式Tr+1=C8r•(8-r•(r=(r•C8r(r=0,1,…,8),
∴第三项的二项式系数为C82=28,
第三项系数为(2•C82=7;
(3)令4-r=1,得r=4,
∴含x项的系数为(4•C84=
分析:(1)根据二项式定理求出(+n的展开式中,前三项系数,根据等差数列的性质列出关于n的方程,求出方程的解即可得到n的值;
(2)把(1)求出的n的值代入展开式的通项公式中,化简后将r=2代入即可求出第3项的二次项的系数及项的系数;
(3)令(2)中化简后的展开项的通项公式中x的指数等于1,即可求出此时r的值,代入系数公式中即可求出含x项的系数.
点评:此题考查学生掌握等差数列的性质,灵活运用二次项定理化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二项式(
3x
+
1
x
)n
的展开式中各项系数的和为256.
(1)求n.
(2)求展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二项式(x+
1
2
)
n
的展开式中前三项的系数成等差数列.
(1)求n的值;
(2)设(x+
1
2
)
n
=a0+a1x+a2x2+…+ 
anxn.①求a5的值;②求a0-a1+a2-a3+…+(-1)nan的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二项式(x2+
1
x
)n
的展开式的二项式系数之和为32,则展开式中含x项的系数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在(x
x
-
1
x3
)
n
的展开式中,第4项是常数项.
(1)求第6项的二项式系数;
(2)若Cnr-1=Cn3r-2,求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
a
+
1
3a2
)n
的展开式的第三项与第二项的系数的比为11:2,则n是(  )

查看答案和解析>>

同步练习册答案