精英家教网 > 高中数学 > 题目详情
已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点.
(1)求点A1到平面的BDEF的距离;
(2)求直线A1D与平面BDEF所成的角.
(1)点到平面的BDEF的距离;(2)直线A1D与平面BDEF所成的角为

试题分析:(1)建立空间坐标系,分别写出各点的坐标,设点在平面BDEF上的射影为H,连结A1D,知A1D是平面BDEF的斜线段;求出的长即为点到平面的BDEF的距离;
(2)由(1)可知,△为等腰直角三角形,即直线A1D与平面BDEF所成的角.
(1)如图,建立空间直角坐标系D—xyz,

则知B(1,1,0),
是平面的法向量,



设点在平面BDEF上的射影为H,连结A1D,知A1D是平面BDEF的斜线段.


即点到平面BDEF的距离为1.
(2)由(1)知,=1,又A1D=,则△为等腰直角三角形,

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥E﹣ABCD中,矩形ABCD所在的平面与平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点
(1)求证:DE∥平面FGH;
(2)若点P在直线GF上,,且二面角D﹣BP﹣A的大小为,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是直角梯形,,
平面平面,若,,且

(1)求证:平面; 
(2)设平面与平面所成二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为1的正三角形所在平面与直角梯形所在平面垂直,且分别是线段的中点.

(1)求证:平面平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面是平行四边形,,
.若中点,为线段上的点,且
(1)求证:平面
(2)求PC与平面PAD所成角的正弦值.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形为平行四边形,平面.

(1)若是线段的中点,求证:平面
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F分别为AD,CD的中点.

(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知在长方体ABCD-A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

分别是的斜边上的两个三等分点,已知,则      

查看答案和解析>>

同步练习册答案