精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)在[-3,4]上的图象是一条连续的曲线,且其部分对应值如表:
x-3-2-101234
f(x)6m-4-6-6-4n6
则函数f(x)的零点所在区间有(  )
A.(-3,-1)和(-1,1)B.(-3,-1)和(2,4)C.(-1,1)和(1,2)D.(-∞,-3)和(4,+∞)

分析 根据根的存在定理,判断函数值的符号,然后判断函数零点个数即可.

解答 解:依题意,∵f(-3)>0,f(-1)<0,f(4)>0,f(2)<0,
∴根据根的存在性定理可知,在区间(-3,-1)和(2,4)含有一个零点,
故选B.

点评 本题主要考查函数零点个数的判断,用二分法判断函数的零点的方法,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知A={x|a1x2+b1x+c1>0(a1,b1,c1∈R,a1b1c1≠0)},B={x|a2x2+b2x+c2>0(a2,b2,c2∈R,a2b2c2≠0)},则A=B是$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$成立的(  )
A.充分不必要条件B.必要不充分条件
C.既不充分也不必要条件D.充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是偶函数,当x>0时,f(x)=$\frac{a{x}^{2}}{x+1}$.若曲线y=f(x)在点(-1,f(-1))处切线的斜率为-1,则实数a的值为(  )
A.-$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点H(-1,0),动点P是y轴上除原点外的一点,动点M满足PH⊥PM,且PM与x轴交于点Q,Q是PM的中点.
(1)求动点M的轨迹E的方程;
(2)已知直线l1:x=my+$\frac{1}{8}$与曲线E交于A,C两点,直线l2与l1关于x轴对称,且交曲线E于B,D两点,试用m表示四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某高校青年志愿者协会,组织大一学生开展一次爱心包裹劝募活动,将派出的志愿者,分成甲、乙两个小组,分别在两个不同的场地进行劝募,每个小组各6人,爱心人士每捐购一个爱心包裹,志愿者就将送出一个钥匙扣作为纪念,茎叶图记录了这两个小组成员某天劝募包裹时送出钥匙扣的个数,且图中乙组的一个数据模糊不清,用x表示,已知甲组送出钥匙扣的平均数比乙组的平均数少一个.
(1)求图中x的值;
(2)在乙组的数据中任取两个,写出所有的基本事件并求两数据都大于甲组增均数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x、y满足不等式组$\left\{\begin{array}{l}{x+y≤1}\\{x-y≥-1}\\{y≥0}\end{array}\right.$,若直线x-y-a=0平分不等式组所表示的平面区域的面积,则a的值为(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{2}}{2}$C.1-2$\sqrt{2}$D.1-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,正方体ABCD-A1B1C1D1中,E、F,M分别是AB,AM,AA1的中点,P,Q分别是A1B1,A1D1上的动点(不与A1重合),且A1P=A1Q.
(1)求证:EF∥平面MPQ;
(2)当平面MPQ与平面EFM所成二面角为直二面角时,求二面角E-MP-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.
(1)证明:AC⊥DE;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小为60°,求PD:AD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,且∠ABC=120°,PD⊥AB,平面PAB⊥平面ABCD,点E,F为棱PB,PC中点,二面角F-AD-C的平面角的余弦值为$\frac{3\sqrt{13}}{13}$.
(1)求棱PA的长;
(2)求PD与平面ADFE所成角的正切值.

查看答案和解析>>

同步练习册答案